Skip Nav Destination
Close Modal
Search Results for
phase transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 774
Search Results for phase transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560029
EISBN: 978-1-62708-291-4
... isothermal transformation and continuous-cooling diagrams and how to recognize the effect of various alloying elements. alloying elements constitutional diagram continuous-cooling diagram isothermal transformation diagram phase transformations It has been established that a microscopical...
Abstract
This chapter describes some of the most essential tools in metallurgy and what they reveal about the structure, composition, and processing requirements of steel. It begins by identifying important details in the constitutional diagram of iron-cementite. It then explains how to read isothermal transformation and continuous-cooling diagrams and how to recognize the effect of various alloying elements.
Book Chapter
Introduction to Phase Transformations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240053
EISBN: 978-1-62708-251-8
... Abstract This chapter provides a short introduction to phase transformations, namely, the liquid-to-solid phase transformations that occur during solidification and the solid-to-solid transformations that are important in processing, such as heat treatment. It also introduces the concept...
Abstract
This chapter provides a short introduction to phase transformations, namely, the liquid-to-solid phase transformations that occur during solidification and the solid-to-solid transformations that are important in processing, such as heat treatment. It also introduces the concept of free energy that governs whether or not a phase transformation is possible, and then the kinetic considerations that determine the rate at which transformations take place. The chapter also describes important solid-state transformations such as spinodal decomposition and martensitic transformation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860295
EISBN: 978-1-62708-348-5
... austenitic stainless steel cryogenic applications iron-nickel alloys martensitic transformation polymers solidified gases superconductors 9.1 Introduction In the late 1800s, the German metallurgist Martens identified a new crystalline phase in steel, which he associated with steel hardening...
Abstract
This chapter concentrates on very low-temperature martensitic transformations, which are of great concern for cryogenic applications and research. The principal transformation characteristics are reviewed and then elaborated. The material classes or alloy systems that exhibit martensitic transformations at very low temperatures are discussed. In particular, the martensitic transformations and their effects in austenitic stainless steels, iron-nickel alloys, practical superconductors, alkali metals, solidified gases, and polymers are discussed.
Book Chapter
Solid Solutions and Phase Transformations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420015
EISBN: 978-1-62708-310-2
... atoms. It discusses the difference between interstitial and substitutional solid solutions and the factors that determine the type of solution that two metals are likely to form. It also addresses the development of intermediate phases, the role of free energy, transformation kinetics, liquid-to-solid...
Abstract
This chapter describes the physical characteristics, properties, and behaviors of solid solutions under equilibrium conditions. It begins with a review of a single-component pure metal system and its unary phase diagram. It then examines the solid solution formed by copper and nickel atoms. It discusses the difference between interstitial and substitutional solid solutions and the factors that determine the type of solution that two metals are likely to form. It also addresses the development of intermediate phases, the role of free energy, transformation kinetics, liquid-to-solid and solid-state phase transformations, and the allotropic nature of metals.
Book Chapter
The Iron-Carbon Phase Diagram and Time-Temperature-Transformation (TTT) Diagrams
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
... Abstract This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Image
Hot working with phase transformation on cooling. (a) Conventional: while t...
Available to PurchasePublished: 01 August 2018
Fig. 11.46 Hot working with phase transformation on cooling. (a) Conventional: while the structure is controlled during hot working following adequate combinations of temperature and deformation, the final properties of the part are defined in a heat treatment performed afterward. (b
More
Image
Schematic illustration of the phase transformation taking place when harden...
Available to PurchasePublished: 01 December 2003
Fig. 7 Schematic illustration of the phase transformation taking place when hardening steel with sufficient carbon present. Crystal lattice: bcc, body-centered cubic; fcc, face-centered cubic; bct, body-centered tetragonal
More
Image
Free-energy-vs.-temperature schematic for phase transformation. The equilib...
Available to PurchasePublished: 01 June 1983
Figure 9.1 Free-energy-vs.-temperature schematic for phase transformation. The equilibrium temperature is T 0 ; the martensite start temperature is T ms .
More
Image
The Fe-C phase equilibrium diagram at 1 atm. The phase transformations of F...
Available to Purchase
in Steel as a Material
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 1.3 The Fe-C phase equilibrium diagram at 1 atm. The phase transformations of Fe are indicated on the vertical axis (0% C), corresponding to pure Fe. The range of temperatures in which FCC (called γ, or austenite) is stable increases with the addition of C up to around 0.8
More
Image
Published: 01 October 2012
Image
Beta transformation in a eutectoid system. Phase relationships can be predi...
Available to Purchase
in Principles of Beta Transformation and Heat Treatment of Titanium Alloys[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 4.3 Beta transformation in a eutectoid system. Phase relationships can be predicted by extrapolating the beta phase boundaries below the eutectoid temperature. The beta phase transforms into alpha and an intermetallic phase, gamma.
More
Image
Variation of the specific phase volume of different steel transformation ph...
Available to Purchase
in Sources of Failures in Carburized and Carbonitrided Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 28 Variation of the specific phase volume of different steel transformation phases as a function of temperature. Source: Ref 69
More
Image
Edgar C. Bain’s work on isothermal transformation showed a new phase, which...
Available to PurchasePublished: 01 May 2018
FIG. 10.14 Edgar C. Bain’s work on isothermal transformation showed a new phase, which was named bainite in his honor.
More
Image
Hypothetical phase diagrams. Curves originate at the transformation tempera...
Available to Purchase
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.1 Hypothetical phase diagrams. Curves originate at the transformation temperature 885 °C (1625 °F) and show the effects of alpha- and beta-stabilizing elements on the α and β transus.
More
Image
The solid-state transformation in the iron-rich portion of the Fe–Ni phase ...
Available to PurchasePublished: 01 June 1983
Figure 11.29 The solid-state transformation in the iron-rich portion of the Fe–Ni phase diagram ( Metals Handbook , 1973 ). Austenite is labeled γ , ferrite is labeled α .
More
Book Chapter
Origin of Microstructure
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400023
EISBN: 978-1-62708-258-7
... Abstract This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment...
Abstract
This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment (as in steels) and solidification (as in cast irons). The chapter describes how the development of the iron-carbon phase diagram, coupled with the understanding of the kinetics of phase transformations through the use of isothermal transformation diagram, were breakthroughs in the advancement of ferrous physical metallurgy. Several examples of the morphological features of microstructural constituents in steels are also presented.
Book Chapter
The Iron-Carbon System
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240153
EISBN: 978-1-62708-251-8
... Abstract This chapter examines the isothermal phase transformations of the iron-carbide system. The discussion includes the formation of ferritic, eutectoid, hypoeutectoid, hypereutectoid, bainitic, and martensitic microstructures as well as their properties, composition, and metallurgy...
Abstract
This chapter examines the isothermal phase transformations of the iron-carbide system. The discussion includes the formation of ferritic, eutectoid, hypoeutectoid, hypereutectoid, bainitic, and martensitic microstructures as well as their properties, composition, and metallurgy. The use of time-temperature-transformation (TTT) diagrams in understanding the phase transformations and the changes in the isothermal transformation curves due to the addition of carbon and other alloying elements are also discussed.
Book Chapter
Principles of Beta Transformation and Heat Treatment of Titanium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480075
EISBN: 978-1-62708-318-8
... Abstract Titanium alloys respond well to heat treatment be it to increase strength (age hardening), reduce residual stresses, or minimize tradeoffs in ductility, machinability, and dimensional and structural stability (annealing). This chapter describes the phase transformations associated...
Abstract
Titanium alloys respond well to heat treatment be it to increase strength (age hardening), reduce residual stresses, or minimize tradeoffs in ductility, machinability, and dimensional and structural stability (annealing). This chapter describes the phase transformations associated with these processes, explaining how and why they occur and how they are typically controlled. It makes extensive use of phase diagrams and cooling curves to illustrate the effects of alloying and quenching on beta-to-alpha transformations and the conditions that produce metastable phases. It also examines several time-temperature-transformation diagrams, which account for the effect of cooling rate.
Book Chapter
Principles of Tool Steel Heat Treatment
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900067
EISBN: 978-1-62708-358-4
... of austenite. The role that diffusion-controlled phase transformations play relative to the hardenability of high-carbon and alloy tool steels is then emphasized. It presents general considerations of transformation diagrams, Jominy curves, and the hardenability of tool steels. The factors related...
Abstract
This chapter describes how the phases are arranged into desired microstructures during the heat treatment of tool steels. It describes the microstructural changes that are the objectives of the austenitizing, quenching, and tempering steps of tool steel hardening. The chapter covers austenite composition, retained austenite, and austenite grain size and grain growth. It provides information on the hardness and hardenability of tool steel. The chapter reviews some of these concepts and describes the microstructural appearance of the products of diffusion-controlled transformation of austenite. The role that diffusion-controlled phase transformations play relative to the hardenability of high-carbon and alloy tool steels is then emphasized. It presents general considerations of transformation diagrams, Jominy curves, and the hardenability of tool steels. The factors related to the kinetics and stabilization of martensite transformation are also covered. It briefly reviews selected aspects of the changes that evolve during tempering.
Book Chapter
Isothermal and Continuous Cooling Transformation Diagrams
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410197
EISBN: 978-1-62708-265-5
... Isothermal and continuous cooling transformation (CT) diagrams help users map out diffusion-controlled phase transformations of austenite to various mixtures of ferrite and cementite. This chapter discusses the application as well as limitations of these engineering tools in the context of heat...
Abstract
Isothermal and continuous cooling transformation (CT) diagrams help users map out diffusion-controlled phase transformations of austenite to various mixtures of ferrite and cementite. This chapter discusses the application as well as limitations of these engineering tools in the context of heat treating eutectoid, hypoeutectoid, and proeutectoid steels. It also provides references to large collections of transformation diagrams and includes several diagrams that plot quenching and hardening transformations as a function of bar diameter.
1