Skip Nav Destination
Close Modal
Search Results for
phase diagram
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1351 Search Results for
phase diagram
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140009
EISBN: 978-1-62708-264-8
... Abstract Steel is made by adding carbon to iron, producing a solid solution defined by its crystalline structure. This chapter discusses the effect of carbon composition and temperature on the types of structures, or phases, that form. Using detailed phase diagrams, it explains how low-carbon...
Abstract
Steel is made by adding carbon to iron, producing a solid solution defined by its crystalline structure. This chapter discusses the effect of carbon composition and temperature on the types of structures, or phases, that form. Using detailed phase diagrams, it explains how low-carbon (hypoeutectoid) and high-carbon (hypereutectoid) steels are made, how they are classified, and how they compare. It also describes eutectoid steels which, at 0.77 wt% C, form a separate class noted for its microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140213
EISBN: 978-1-62708-264-8
... Abstract This appendix includes two annotated iron-carbon (Fe-C) phase diagrams. One is a poster-size diagram showing iron-carbon phases up to 7 wt% C along with representative microstructures. The other diagram is close-up view showing the phases that occur from 0 to 1.2 wt% C. It also...
Abstract
This appendix includes two annotated iron-carbon (Fe-C) phase diagrams. One is a poster-size diagram showing iron-carbon phases up to 7 wt% C along with representative microstructures. The other diagram is close-up view showing the phases that occur from 0 to 1.2 wt% C. It also includes labels identifying the microconstituents that form in plain carbon steels under rapid quenching conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420239
EISBN: 978-1-62708-310-2
... Abstract This chapter discusses some of the methods and measurements used to construct phase diagrams. It explains how cooling curves were widely used to determine phase boundaries, and how equilibrated alloys examined under controlled heating and cooling provide information for constructing...
Abstract
This chapter discusses some of the methods and measurements used to construct phase diagrams. It explains how cooling curves were widely used to determine phase boundaries, and how equilibrated alloys examined under controlled heating and cooling provide information for constructing isothermal and vertical sections as well as liquid projections. It also explains how diffusion couples provide a window into local equilibria and identifies typical phase diagram construction errors along with problems stemming from phase-boundary curvatures and congruent transformations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420289
EISBN: 978-1-62708-310-2
... Abstract This chapter discusses the use of phase diagrams in alloy design, processing, and performance assessment. The examples cover both ferrous and nonferrous metals and a variety of goals and objectives. The chapter also identifies limitations and pitfalls associated with the use of phase...
Abstract
This chapter discusses the use of phase diagrams in alloy design, processing, and performance assessment. The examples cover both ferrous and nonferrous metals and a variety of goals and objectives. The chapter also identifies limitations and pitfalls associated with the use of phase diagrams.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
... Science , McGraw-Hill Book Company, New York (1972), Ref 3 ) Fig. 2-4 The iron-carbon phase diagram. (Adapted from Metals Handbook , 8th edition, Vol 8, American Society for Metals, Metals Park, Ohio (1973), Ref 4 ) Fig. 2-5 The microstructure of pearlite, which consists of regions...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240075
EISBN: 978-1-62708-251-8
... Abstract Phase diagrams are graphical representations that show the phases present in the material at various compositions, temperatures, and pressures. This chapter begins with a section describing the construction of phase diagrams for the simple binary isomorphous system. A binary phase...
Abstract
Phase diagrams are graphical representations that show the phases present in the material at various compositions, temperatures, and pressures. This chapter begins with a section describing the construction of phase diagrams for the simple binary isomorphous system. A binary phase diagram can be used to determine three important types of information: the phases that are present, the composition of the phases, and the percentages or fractions of the phases. The chapter then describes the construction of one common type of binary phase diagram i.e., the eutectic alloy system. The major eutectic systems include the aluminum-silicon eutectic system and the lead-tin eutectic system. The chapter discusses the construction of eutectic phase diagrams from free energy curves. It also provides information on peritectic, monotectic, and solid-state reactions in alloy systems. The presence of intermediate phases is also described. Finally, a brief section provides some information on ternary phase diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140005
EISBN: 978-1-62708-264-8
... Abstract In order to understand how the strength of steels is controlled, it is extremely useful to have an elementary understanding of two topics: solutions and phase diagrams. This chapter provides an introduction to these topics with suitable examples. mechanical strength phase...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320091
EISBN: 978-1-62708-357-7
... Abstract This chapter explains the significance of the phase diagram and its use in the development of new materials. The chapter describes the basic rules of heterogeneous equilibrium, presents a comparison between liquidus line and solidus line, and provides information on the solubility...
Abstract
This chapter explains the significance of the phase diagram and its use in the development of new materials. The chapter describes the basic rules of heterogeneous equilibrium, presents a comparison between liquidus line and solidus line, and provides information on the solubility curve and the binodal curve.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420001
EISBN: 978-1-62708-310-2
... Abstract This chapter provides a brief overview of phase diagrams, explaining what they represent and how and why they are used. It identifies key points, lines, and features on a binary nickel-copper phase diagram and explains what they mean from a practical perspective. It also discusses...
Abstract
This chapter provides a brief overview of phase diagrams, explaining what they represent and how and why they are used. It identifies key points, lines, and features on a binary nickel-copper phase diagram and explains what they mean from a practical perspective. It also discusses the concept of equilibrium, the significance of Gibb’s phase rule, the theorem of Le Chatelier, and the use of the lever rule.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420041
EISBN: 978-1-62708-310-2
... Abstract This chapter explains how the principles of chemical thermodynamics are used in the construction and interpretation of phase diagrams. After a brief review of the laws of thermodynamics, it describes the concept of Gibbs free energy and its application to transformations that occur...
Abstract
This chapter explains how the principles of chemical thermodynamics are used in the construction and interpretation of phase diagrams. After a brief review of the laws of thermodynamics, it describes the concept of Gibbs free energy and its application to transformations that occur in single-component and binary solid solutions. It then examines the relationship between the free energy of a solution and the chemical potentials of the individual components. It also explains how to account for the heat of mixing using quasi-chemical models, discusses the effect of interatomic bond energies and chemical potentials, and shows how the equilibrium state of an alloy can be obtained from free-energy curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420191
EISBN: 978-1-62708-310-2
... Abstract This chapter discusses the construction, interpretation, and use of ternary phase diagrams. It begins by examining a hypothetical phase space diagram and several corresponding two-dimensional plots. It then describes one of the most basic tools of metallurgy, the Gibbs triangle...
Abstract
This chapter discusses the construction, interpretation, and use of ternary phase diagrams. It begins by examining a hypothetical phase space diagram and several corresponding two-dimensional plots. It then describes one of the most basic tools of metallurgy, the Gibbs triangle, and explains how to construct tie lines to analyze intermediate compositions and phases. It also discusses the use of three-dimensional temperature-composition diagrams, three- and four-phase equilibrium phase diagrams, and binary and ternary phase diagrams associated with the iron-chromium-nickel alloy system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480031
EISBN: 978-1-62708-318-8
... morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams...
Abstract
This chapter describes the structures, phases, and phase transformations observed in metals and alloys as they solidify and cool to lower temperatures. It begins with a review of the solidification process, covering nucleation, grain growth, and the factors that influence grain morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams and describes the helpful information they contain.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420263
EISBN: 978-1-62708-310-2
... phase diagrams phase equilibria PHASE DIAGRAMS have traditionally been determined purely by experimentation, which is costly and time consuming. While the experimental approach is feasible for the determination of binary and simple ternary phase diagrams, it is less efficient for the complicated...
Abstract
This chapter provides an overview of a computational method, called CALPHAD, used for the study of phase equilibria in multicomponent systems. It describes the thermodynamic models and calculation techniques employed in the software and explains how it applies to complex alloys used in industry. It also provides examples showing how CALPHAD has been used to determine the formability of metallic glass, calculate the dilation of stainless steel during phase transformation, and predict the beta transus and approach curves of commercial titanium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230179
EISBN: 978-1-62708-298-3
... Abstract This chapter is a compilation of beryllium phase diagrams, representing more than 25 binary alloy systems from beryllium-aluminum to beryllium-zirconium. Each diagram is presented along with a summary and source reference. beryllium alloys binary phase diagram IMPORTANT...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.9781627083102
EISBN: 978-1-62708-310-2
Image
Published: 01 December 2008
Fig. 3 (a) Iron-chromium phase diagram at 8% nickel; (b) iron-nickel phase diagram at 18% chromium
More
Image
Published: 01 March 2006
Fig. 3 Part of the aluminum-copper phase diagram. The kappa phase, bounded by ABC, is a solid solution of copper in aluminum; CuAl 2 precipitates from this phase on slow cooling or on aging after solution treatment. Source: Ref 5
More
Image
Published: 01 March 2006
Fig. 5 Beryllium-copper phase diagram. The alpha phase holds about 1.55% Be at 605 °C (1121 °F) and about 2.7% at 865 °C (1590 °F). Decreasing solubility of the beryllium causes precipitation of a hard beryllium-copper phase on slow cooling or on aging after solution treatment. Source: Ref 4
More
Image
Published: 01 August 2013
Fig. 7.1 The iron-rich end of the iron-carbon phase diagram. The phase region labeled γ is face-centered cubic and the phase regions labeled α and δ are body-centered cubic. Iron carbide (Fe 3 C) contains 6.67% C. Source: Adapted from Ref 7.1
More
Image
Published: 01 August 2013