Skip Nav Destination
Close Modal
Search Results for
percussion welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Search Results for percussion welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Weldability Testing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930023
EISBN: 978-1-62708-359-1
... signal necessary for closed-loop control is normally obtained from a fine wire thermocouple percussion welded to the specimen surface. However, for temperatures above the operating limits of thermocouples, a radiation pyrometer can be employed at some sacrifice in the overall response time of the system...
Abstract
This article describes the weldability tests that are used to evaluate the effects of welding on such properties and characteristics as base-metal and weld-metal cracking; base-metal and weld-metal ductility; weld penetration; and weld pool shape and fluid flow. It also describes several weldability tests for evaluating cracking susceptibility, classified as self-restraint or externally loaded tests. The article discusses the processes, advantages, and disadvantages of the weld pool shape tests, the weld penetration tests, and the Gleeble test.
Book Chapter
Fundamentals of Process Control
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220143
EISBN: 978-1-62708-341-6
... and probably the most reliable technique involves the direct attachment of a thermocouple to the part whose temperature must be determined. Typically this is done by percussion welding of the individual thermocouple elements to the part surface approximately 1 to 2 mm (0.04 to 0.08 in.) apart. This procedure...
Abstract
This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional controllers and heat-regulating devices. Integration of control functions is illustrated with examples related to heating of steel slabs, surface hardening of steel parts, vacuum induction melting for casting operations, and process optimization for electric-demand control. Distributed control within larger manufacturing systems is discussed. The chapter also covers nondestructive techniques for process control and methods for process simulation.
Book Chapter
Hot Tensile Testing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060209
EISBN: 978-1-62708-355-3
.... To this end, temperature is monitored by a thermocouple percussion welded to the specimen surface. Using a function generator, heat input to the specimen is controlled according to a predetermined programmed cycle chosen by the investigator. However, the temperature measured from this thermocouple junction...
Abstract
This chapter focuses on short-term tensile testing at high temperatures. It emphasizes one of the most important reasons for conducting hot tensile tests: the determination of the hot working characteristics of metallic materials. Two types of hot tensile tests are discussed in this chapter, namely, the Gleeble test and the conventional isothermal hot-tensile test. The discussion covers equipment used and testing procedures for the Gleeble test along with information on hot ductility and strength data from this test. The chapter describes the stress-strain curves, material coefficients, and flow behavior determined in the isothermal hot tensile test. It also describes three often-overlapping stages of cavitation during tensile deformation, namely, cavity nucleation, growth of individual cavities, and cavity coalescence.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040115
EISBN: 978-1-62708-300-3
... press must carry the full forming load exerted by the hydraulic cylinder on the press bed. The load-carrying capability of the frame is achieved by using various designs such as cast (or welded) structures prestressed by forged tie rods or laminated plates assembled through large transverse pins...
Abstract
This chapter discusses the design and operation of forging presses and hammers. It covers the most common types of presses, including hydraulic, mechanical, and screw presses, explaining how they work and comparing and contrasting their load and displacement profiles, stroke lengths, ram velocities, and energy and stiffness requirements. It also includes information on gravity- and power-drop hammers and where and how they are typically used.