Skip Nav Destination
Close Modal
Search Results for
penetration-enhanced gas tungsten arc welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107 Search Results for
penetration-enhanced gas tungsten arc welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290023
EISBN: 978-1-62708-306-5
.... 2.13 . The recommended current types for different metals are summarized in Table 2.1 . Fig. 2.12 Effect of polarity on gas tungsten arc welding weld configuration when using direct current: (a) direct current electrode negative (DCEN), deep penetration, narrow melted area, approximate 30% heat...
Abstract
Arc welding applies to a large and diversified group of welding processes that use an electric arc as the source of heat to melt and join metals. This chapter provides a detailed overview of specific arc welding methods: shielded metal arc welding, flux cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-GMAW welding, electroslag welding, and electrogas welding. The basic characteristics of gases used for shielding during arc welding are briefly discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930057
EISBN: 978-1-62708-359-1
... that result from improper gas-tungsten arc welding procedures Backing piece left on: Failure to remove material placed at the root of a weld joint to support molten weld metal Shrinkage voids: Cavity-type discontinuities normally formed by shrinkage during solidification Oxide inclusions...
Abstract
Discontinuities are interruptions in the desirable physical structure of a weld. This article describes the types of weld discontinuities that are characteristic of the principal welding processes. Discontinuities covered are metallurgical discontinuities, discontinuities associated with specialized welding processes, and base metal discontinuities. In addition, information on the common inspection methods used to detect these discontinuities is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... Macrograph of a multidirectional beta grain morphology in a Ti-6Al-4V gas-tungsten arc weld. 30× Under simple, uniaxial heat flow (such as occurs in a spot weld), the beta grains nucleate epitaxially on beta grains in the base-metal substrates and solidify preferentially in a direction parallel...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480265
EISBN: 978-1-62708-318-8
... the welding processes that are adaptable to titanium and its alloys. Acceptable processes include gas tungsten arc, plasma arc, gas metal arc, electron beam, friction stir, and resistance spot and seam welding methods where, depending on the method, inert gas, vacuum, and/or metal contact provide the required...
Abstract
This chapter discusses the various methods used to join titanium alloy assemblies, focusing on welding processes and procedures. It explains how welding alters the structure and properties of titanium and how it is influenced by composition, surface qualities, and other factors. It describes several welding processes, including arc welding, resistance welding, and friction stir welding, and addresses related issues such as welding defects, quality control, and stress relieving. The chapter also covers mechanical fastening techniques along with adhesive bonding and brazing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200369
EISBN: 978-1-62708-354-6
... and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding...
Abstract
This chapter covers the basics of weldability of cast steels such as carbon and low alloy steels, corrosion-resistant high alloy steels, nickel-base alloys, heat-resistant high alloy steels, and wear-resistant high austenitic manganese steels. It provides an overview of weld overlay and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding, submerged arc welding, and electroslag and electro-gas welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030096
EISBN: 978-1-62708-282-2
... in austenitic stainless steels as well as several forms of corrosion associated with welding. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are then covered. Microbiological corrosion of butt welds in water tanks is also illustrated. In addition...
Abstract
This chapter discusses various factors that affect corrosion of stainless steel weldments. It begins by providing an overview of the metallurgical factors associated with welding. This is followed by a discussion on preferential attack associated with weld metal precipitates in austenitic stainless steels as well as several forms of corrosion associated with welding. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are then covered. Microbiological corrosion of butt welds in water tanks is also illustrated. In addition, the chapter provides information on corrosion of ferritic and duplex stainless steel weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... Abstract This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... and corrosion resistance, can be achieved by using the inert gas welding processes. The maximum recommended welding current (nonpulsing) for gas tungsten arc welding (GTAW) is approximately 200 A. The maximum recommended welding current (nonpulsing) for gas metal arc welding (GMAW) is approximately 250 A. Both...
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... techniques: Gas tungsten arc welding (GTAW) Gas metal arc welding (GMAW) Shielded metal arc welding (SMAW) Submerged arc welding (SAW) Plasma arc welding (PAW) Electron beam welding (EBW) Laser beam welding (LBW) Resistance spot welding (RSW) Resistance seam welding (RSEW...
Abstract
Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application decisions. It discusses the basic concepts of fusion welding and the differences between solid-solution-hardened and precipitation-hardened wrought superalloys. It addresses joint integrity, design, weld-related cracking, and the effect of grain size, precipitates, and contaminants. It covers common fusion welding techniques, defect prevention, fixturing, heat treatments, and general practices, including the use of filler metals. It also discusses several solid-state welding methods, superplastic forming, and transient liquid phase bonding, a type of diffusion welding process. The chapter includes extensive information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
.... The instantaneous conversion of the kinetic energy of these electrons into thermal energy as they impact and penetrate into the workpiece causes the weld-seam interface surfaces to melt, producing the desired weld-joint coalescence. The gas tungsten arc welding process uses heat produced by an arc generated between...
Abstract
Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design, and testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310201
EISBN: 978-1-62708-286-0
... to stainless steels, including the more sensitive alloys. These, like all joint designs, aim to ensure full penetration without burn through. Fig. 6 Joint designs. Courtesy Ugine S.A. Gas Tungsten Arc Welding (GTAW)/Tungsten Inert Gas (TIG) Gas tungsten arc welding (GTAW)/tungsten inert gas...
Abstract
This chapter provides a basis for understanding the influence of stainless steel alloy composition and metallurgy on the welding process, which involves complex dynamics associated with melting, refining, and thermal processing. It begins with an overview of the welding characteristics of the categories of stainless steels, namely austenitic, duplex, ferritic, martensitic, and precipitation-hardening stainless steels. This is followed by a discussion of the selection criteria for materials to be welded. Various welding processes used with stainless steel are then described. The chapter ends with a section on some of the practices to ensure safety and weld quality.
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... plate. Usually more economical than drilling and tapping. SMAW, shielded metal arc welding; GMAW, gas metal arc welding; FCAW, flux-cored arc welding; GTAW, gas tungsten arc welding; PAW, plasma arc welding; SAW, submerged arc welding; EGW, electrogas welding; ESW, electroslag welding; SW, stud arc...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240583
EISBN: 978-1-62708-251-8
... carbide (HfC) and may also include additions of rhenium. Tungsten-thoria alloys have traditionally been used for gas tungsten arc welding electrodes but have fallen from favor somewhat due to their radioactive properties. However, arc welding electrodes of tungsten alloyed with ceria (W-2CeO 2 ), zirconia...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. These metals are considered refractory because of their high melting points, high-temperature mechanical stability, and resistance to softening at elevated temperatures. This article discusses the composition, properties, fabrication procedures, advantages and disadvantages, and applications of these refractory metals and their alloys. A comparison of some of the properties of the refractory metals with those of iron, copper, and aluminum is given in a table. The article concludes with a brief section on refractory metal protective coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290001
EISBN: 978-1-62708-306-5
..., such as gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Fig. 1.6 Welding using shielded metal arc welding process Resistance Welding After the two parts have been pressed together, electric current passes through the joint to heat and melt the interface. Pressure is kept...
Abstract
Joining comprises a large number of processes used to assemble individual parts into a larger, more complex component or assembly. The selection of an appropriate design to join parts is based on several considerations related to both the product and the joining process. Many product design departments now improve the ease with which products are assembled by using design for assembly (DFA) techniques, which seek to ensure ease of assembly by developing designs that are easy to assemble. This chapter discusses the general guidelines for DFA and concurrent engineering rules before examining the various joining processes, namely fusion welding, solid-state welding, brazing, soldering, mechanical fastening, and adhesive bonding. In addition, it provides information on several design considerations related to the joining process and selection of the appropriate process for joining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... of its availability or for enhanced arc stability, a particular mode of weld metal transfer, enhanced penetration or bead profile, or easier arc ignition. There is no question that quality welds require quality shielding. It is essential that clean gas be maintained and delivered to the point of use...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030089
EISBN: 978-1-62708-282-2
... cooling rates) made by, for example, the shielded metal arc, gas tungsten arc, and metal inertgas processes. Note that in comparing the heat input, it is necessary to account for the arc efficiency to compare processes. Depending on the welding conditions, weld metal microstructures generally tend...
Abstract
This chapter describes issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The forms of corrosion covered includes preferential heat affected zone corrosion, preferential weld metal corrosion, and galvanic corrosion. Industrial case studies demonstrating the necessity for testing each galvanic couple in the environment for which it is intended are presented. The chapter also discusses various factors associated with stress-corrosion cracking in oil refineries.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... if they are not oriented almost parallel with the radiation beam. Radiography is not effective at detecting incomplete sidewall fusion in metal-inert gas welds with a 30° chamfer angle, for example, unless the radiographic source is aligned with the angle, which requires multiple exposures. In eddy-current testing...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... Abstract This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310155
EISBN: 978-1-62708-286-0
..., is often deliberately kept at moderate levels (0.008 to 0.015%) for tungsten inert gas (TIG) welding penetration (see Chapter 17 ) and at high levels (0.15%+) for machinability (see Chapter 15 ). These trade-offs, which are beneficial to processors, should be viewed with skepticism by end users, whose...
Abstract
This article discusses the steps in the primary processing of stainless steels: melting, refining, remelting, casting, and hot rolling. It provides information of the major categories of defects in hot rolled stainless steels, namely hot mill defects, inclusion-related defects, and hot ductility-related defects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000167
EISBN: 978-1-62708-312-6
... welding methods, such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW), and a number of resistance welding methods, such as flash welding and high-energy impulse welding (HEIW). In the GTAW process, an arc is produced between a nonconsumable tungsten electrode and the base metal. In PM...
Abstract
This chapter describes secondary processes employed in the production of powder-metal stainless steel parts, including various machining operations, welding, brazing, sinter bonding, resin impregnation, re-pressing and sizing, and surface finishing. It also discusses the factors that affect the machinability and weldability of sintered stainless steels.
1