Skip Nav Destination
Close Modal
Search Results for
pattern equipment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 437 Search Results for
pattern equipment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200164
EISBN: 978-1-62708-354-6
... Abstract Pattern equipment is the tooling utilized to form the mold cavity of a casting. This chapter first discusses the following factors that should be considered for determining the type of pattern equipment: number of castings to be produced, mold processes to be employed, dimensional...
Abstract
Pattern equipment is the tooling utilized to form the mold cavity of a casting. This chapter first discusses the following factors that should be considered for determining the type of pattern equipment: number of castings to be produced, mold processes to be employed, dimensional tolerances required, casting design, and pattern cost. It also discusses the factors that should be considered when engineering a pattern. The chapter then presents the types of materials used for pattern construction. It provides an overview of patternmaker's shrinkage allowance. Finally, the chapter presents the factors that govern the space requirements for pattern storage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200078
EISBN: 978-1-62708-354-6
... drawings. Target points should be included in the drawing (see Chapter 9 ). Drawings are required regardless of the existence of patterns. Pattern . If patterns and core boxes are available, the request for a quotation should indicate the type and condition of the equipment (see Chapter 12...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200001
EISBN: 978-1-62708-354-6
... operations for producing a steel casting Fig. 1-2 Typical steps involved in making a casting from a green sand mold Pattern Equipment Chapter 11 discusses this important step in the casting process in detail, however, the following points summarize some of the important aspects...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200206
EISBN: 978-1-62708-354-6
... by the customer, the situation can normally be corrected readily. In most cases, all that is required is some adjustment of chemistry, heat treatment procedure, or pattern equipment. However, if lack of capability is caused by too large a variation (standard deviation), correction becomes more difficult...
Abstract
Users of steel castings establish performance requirements for specific characteristics of the castings based on the planned use. They express tolerance for variation in those characteristics to the producer of the castings. One issue which should never be taken for granted in considering capability and tolerances is the ability to measure with accuracy and precision (repeatability and reproducibility). This chapter discusses the methods for measuring accuracy and precision. It describes the variation of process characteristics, capability indices in general use, and factors related to process performance and tolerance specification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200140
EISBN: 978-1-62708-354-6
... into account the size, shape, and weight of the casting as well as the type of pattern equipment to be used. Concept Sketches Concept sketches can combine input from both supplier and customer to rough out the shape. While the customer checks out stress levels, the foundry can model directional...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220241
EISBN: 978-1-62708-341-6
... concentrators and shields are used to modify the field of magnetic induction (thereby shaping the heating pattern) or to prevent auxiliary equipment or certain portions of a workpiece from being heated, respectively. Susceptors are materials which are readily heated by induction and which subsequently are used...
Abstract
To a large extent, the induction coil and its coupling to the workpiece determine the precise heating pattern that is developed. However, it is often desirable to modify this pattern in order to produce a special heating distribution or to increase energy efficiency. At other times, the high heating rates of induction are needed for processing nonconductors. This chapter describes broad methods of accomplishing such objectives: modification of the field of magnetic induction, use of devices to prevent auxiliary equipment or certain portions of a workpiece from being heated, and techniques to apply heating to electrically nonconductive materials. These methods make use of devices such as flux concentrators, shields, and susceptors. The chapter provides a description of the materials for these devices and guidelines for their application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200115
EISBN: 978-1-62708-354-6
... are changed to be more strict, the design should be reviewed, as design changes may be required to meet the new soundness levels. This sometimes requires the modification of pattern equipment and foundry technique. These changes should always be discussed with the foundry engineer. The purpose...
Abstract
This chapter explains various aspects of the foundry process that the design engineer should consider when designing steel castings. It discusses special feeding aids, such as tapers, padding, ribs, and chills that may be used by foundry personnel to promote directional solidification. The chapter addresses the design of castings to reduce the occurrence of internal shrinkage. It provides a detailed discussion on design considerations for molding, cleaning, machining, and function.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090131
EISBN: 978-1-62708-462-8
... Abstract This chapter assesses the potential impact of neural networks on package-level failure analysis, the challenges presented by next-generation semiconductor packages, and the measures that can be taken to maximize FA equipment uptime and throughput. It presents examples showing how...
Abstract
This chapter assesses the potential impact of neural networks on package-level failure analysis, the challenges presented by next-generation semiconductor packages, and the measures that can be taken to maximize FA equipment uptime and throughput. It presents examples showing how neural networks have been trained to detect and classify PCB defects, improve signal-to-noise ratios in SEM images, recognize wafer failure patterns, and predict failure modes. It explains how new packaging strategies, particularly stacking and disintegration, complicate fault isolation and evaluates the ability of various imaging methods to locate defects in die stacks. It also presents best practices for sample preparation, inspection, and navigation and offers suggestions for improving the reliability and service life of tools.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200173
EISBN: 978-1-62708-354-6
... process are: The required quality of the casting surface The dimensional accuracy of the casting The number of castings required per order The type of pattern and core box equipment needed The cost of making the mold(s) Molding processes can be divided into two main categories...
Abstract
This chapter discusses the following conventional molding processes for static casting: green sand molding, dry sand molding, vacuum molding, and expendable pattern casting. It also discusses core and mold processes for steel castings. The chapter provides an overview of sand molds for large steel castings and a special sand molding process. It describes the following precision processes for static casting: investment casting, ceramic molding, and centrifugal casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.sch6.9781627083546
EISBN: 978-1-62708-354-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200197
EISBN: 978-1-62708-354-6
... requirements and may require only a few dimensional checks. These castings would be inspected using the more conventional layout and measurement tools, calipers, and gages. It should be remembered when specifying critical dimensions and tolerancing that the type, accuracy and condition of pattern equipment...
Abstract
After pouring, castings are allowed to solidify and cool. They are later removed from the molds in the shakeout operation. A series of activities then follow, which are generally referred to as finishing and heat treatment. These activities can be broadly categorized as shakeout, abrasive blast cleaning, removal of risers, ingates, and discontinuities, rough inspection, removal of discontinuities, finishing welding, heat treatment, and final visual, dimensional, and NDT inspection. This chapter provides a detailed discussion on these activities.
Image
Published: 01 September 2008
Fig. 27 (a) Single-shot inductors used for both track (lobes) and shaft of this automotive component. The part is sectioned and acid etched to show the hardness pattern. All tracks are hardened at the same time using 250 kW/30 kHz; the stem is hardened using 135 kW/10 kHz. (b) Automotive right
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ceeg.t59370059
EISBN: 978-1-62708-447-5
... through bottom discharge clamshell doors. This method did not distribute the sand uniformly and required manual intervention. Automatic molding machines are now equipped with blow or aeration filling. Deep patterns benefit from the air-flow method for sand filling. Figure 4.13 illustrates the sand...
Abstract
Molding flasks and other supplementary equipment are essential for molding complex shapes at competitive production rates and costs. This chapter addresses the design aspects of molding flasks and accessories, the features and handling accessories of molding machines, core making machines and innovations for productivity and quality, and automated core-setting aids.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200144
EISBN: 978-1-62708-354-6
...% more weight was added and the redesign was made on the original pattern equipment with little expense. Service life has been materially increased since there have been no failures with the redesigned casting. Fig. 10-22 Original design of a cutter blade holder casting, left, and the redesign...
Abstract
Parts of machines and equipment that have previously been designed as wrought or fabricated parts, or as cast parts of metals other than steel, are often reconsidered as steel castings. This chapter presents bending test data for several junction designs of L and box sections and discusses redesign from fabrication, forgings, and cast iron. The chapter also includes the benefits of redesign.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320011
EISBN: 978-1-62708-332-4
... applications. 3.1.1.1 Match Plate Molding Molds are usually produced in two parts by compacting prepared sand over patterns mounted on plates. The molds are stripped from the patterns and assembled for pouring. The sprue and gates for the metal entry as well as the feeders to feed the solidification...
Abstract
Most iron and steel castings are produced by casting into sand molds. Sand cores are needed primarily to form hollow cavities in castings for collapsibility and ease of cleaning. This chapter begins with an overview of the classification of molding and core-making systems. This is followed by a section discussing the process involved in shell molding, along with its applications. A brief description of the special casting processes is then presented. Next, the chapter discusses the processes involved in core making. Further, it provides an overview of casting manufacturing. Finally, the chapter provides information on the factors that influence a casting facility layout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250249
EISBN: 978-1-62708-345-4
... not lend itself to carburizing and quenching the entire part. This chapter focuses on the processes involved in the induction and flame hardening, covering the applicable materials, hardening patterns, preheat treatment, quenching, tempering, surface hardness, case depth, hardening problems, dual-frequency...
Abstract
Induction and flame hardening are methods of hardening the surfaces of components, usually in selected areas, by the short-time application of high-intensity heating followed by quenching. These processes are used when gear teeth require high hardness, but size or configuration does not lend itself to carburizing and quenching the entire part. This chapter focuses on the processes involved in the induction and flame hardening, covering the applicable materials, hardening patterns, preheat treatment, quenching, tempering, surface hardness, case depth, hardening problems, dual-frequency process, and applications.
Image
Published: 01 November 2012
Fig. 9 Self-sharpening of a digging tooth from ground-contact equipment by controlled wear through selective hardfacing. The pattern of hardfacing can be varied to suit the condition, but note that the blunt tooth is hardened on both sides, while the self-sharpening tooth is hardened on only
More
Image
Published: 30 November 2013
Fig. 7 Self-sharpening of a digging tooth from ground-contact equipment by controlled wear through selective hardfacing. The pattern of hardfacing can be varied to suit the condition, but note that the blunt tooth is hardened on both sides, while the self-sharpening tooth is hardened on only
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200133
EISBN: 978-1-62708-354-6
... pattern equipment and pattern masters can be rapidly produced. If the master does not meet design requirements, another one can be made after having changed the solid model, without incurring a significant loss of time and money. Rapid prototyping has great potential in the investment casting process...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
... insights into the effects of coil design and equipment characteristics on heating patterns in irregularly shaped parts. This information, coupled with knowledge generated through years of experimentation in both laboratory and production environments, serves as the basis for the practical design...
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
1