Skip Nav Destination
Close Modal
Search Results for
particle shape
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 655 Search Results for
particle shape
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 April 2020
Fig. 5.22 The role of particle shape on mixture rheology is evident by using three titanium powders (spherical, rounded, and irregular) in a paraffin wax binder. Torque rheometry identifies significant differences in solids loading for the target 1 N ∙ m mixing torque.
More
Image
Published: 01 November 2013
Fig. 8 Effect of milling time on particle shape change of spherical Ti-6Al-4V alloy particles. (a) As-received particle. (b) After 1 h. (c) After 2 h. (d) After 4 h. (e) After 8 h. (f) After 16 h. Source: Ref 4
More
Image
Published: 01 June 2008
Image
Published: 01 November 2013
Fig. 16 Effect of particle size and shape of components of 90%Fe-10%Cu mixtures on degree of blending. Quality of blending improves as variability coefficient decreases. Particle size and shape for components: (a) Cu, 200–300 μm; Fe, <63 μm of spherical particle shape. (b) Cu, 200–315 μm
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
... Abstract This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 23 Magnetic particle inspection of the failed pinion gear showed arc-shaped cracks on the gear tooth faces.
More
Image
Published: 01 August 1999
Fig. 7.1 (Part 5) (k) Shapes of cementite particles (shown cross-hatched) located at ferritic grain boundaries. A, Triple point in ferrite; B, Single particle at a triple point in ferrite; C, Single particle at a ferritic grain boundary; D, Two particles at a triple point in ferrite.
More
Image
in Types of Wear and Erosion and Their Mechanisms
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 4.12 Crater shape produced by a continued stream of particles with a 90-degree impingement angle
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000023
EISBN: 978-1-62708-312-6
..., particle size distribution, and particle shape, so as to produce powders that are suited for their intended uses and to conduct the powder production process in a cost-effective way. Intended uses of powders are most often discussed in terms of specific requirements of their engineering properties...
Abstract
Stainless steel powders are usually made by water or gas atomization. This chapter describes both processes and the properties and characteristics of the powders they produce. It also discusses secondary processes, including drying, screening, annealing, and lubricating, and the effects of iron contamination on corrosion resistance.
Image
Published: 30 April 2020
Fig. 2.2 Large, spherical titanium powder fabricated by plasma atomization, giving a spherical particle shape
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 4 SEM image of a stainless steel powder having a marginally irregular particle shape, leading to high apparent density, low green strength, high compressibility, and a high flow rate
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 1 SEM image of a water atomized stainless steel powder (316L) having a moderately irregular particle shape, leading to a good combination of apparent density, green strength, compressibility, and flow rate
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 2 SEM image of a stainless steel powder (409L) having a highly irregular particle shape, leading to low apparent density, high green strength, low compressibility, and marginal flow rate
More
Image
in Atlas of Microstructures
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 5 SEM of a gas atomized 316L powder having the typical spherical particle shape. Such powders are used in MIM and in hot isostatic compaction. Source: Courtesy of Roberto Garcia, N.C. State University
More
Image
in Visual Identification of Microstructural Constituents in Metallographic Cross Sections
> Aluminum-Silicon Casting Alloys: Atlas of Microstructures
Published: 01 December 2016
Fig. 4.1 Microstructure of the AlSi21CuNi alloy. Phase constituent identification is based on the visual attributes of the particles, shape and color. Eutectic silicon: irregular polygons and plates, dark gray. β MgSi : Chinese script, blue. θ Cu : rounded, light yellow. Nickel intermetallics
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000203
EISBN: 978-1-62708-312-6
... Fig. 1 SEM image of a water atomized stainless steel powder (316L) having a moderately irregular particle shape, leading to a good combination of apparent density, green strength, compressibility, and flow rate Fig. 2 SEM image of a stainless steel powder (409L) having a highly irregular...
Abstract
This atlas contains images showing how sintering conditions (time, temperature, and atmosphere) and compaction pressure affect the microstructure of different types of stainless steel. It also includes images of stainless steel powders, fracture surfaces, and test specimens characterized by the presence of compounds, such as oxides, carbides, and nitrides, and various forms of corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460173
EISBN: 978-1-62708-285-3
... by the physical properties of the powder, such as particle shape and size distribution. 6.1 Key Powder Properties The required particle size distribution is specific to the cold spray equipment used and varies in the range of 5–200 μm. The powder must flow freely through the feeding system, creating...
Abstract
Increasing growth of high-pressure cold spraying applications on the industrial scale have forced global powder producers to face this challenge and develop specific powders for cold spray applications. This chapter provides information on the properties, classification, characteristics, manufacturing, and procedures for packaging of powders specific to cold spray applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
... Abstract This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area...
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230267
EISBN: 978-1-62708-298-3
... are not equal to properties of hot pressed material. Plasma-sprayed thin-walled preforms may be sintered into hollow shapes with satisfactory properties. Control of the beryllium particle size distribution and impurity control is essential to achieve extruded products. During the course of beryllium powder...
Abstract
Powder metallurgy plays a central role in the production of nearly all beryllium components. This chapter describes the primary steps in the powder metal process and the work that has been done to improve each one. It explains how beryllium powders are made and how they are consolidated prior to sintering. It also compares and contrasts the properties of beryllium products made using different methods and provides composition and particle size data on commercially available powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290001
EISBN: 978-1-62708-319-5
... processing into the realm of metals and alloys, ceramics, cemented carbides, and composite materials. The forming operations rely on a binder or polymer (the two terms are often used synonymously) to enable shaping. The binder is removed after shaping, while the shaped particles are subjected to sintering...
Abstract
This chapter provides an introduction to powder processing of binders and polymers. It sets the context for the remainder of the book by providing an overview of the topics discussed in the subsequent chapters and by providing introduction to powder-binder fabrication and customization of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing.
1