Skip Nav Destination
Close Modal
By
Vladimir Dmitrovic, Rama I. Hegde, Andrew J. Mawer, Rik J. Otte, D. Martin Knotter ...
Search Results for
particle
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 191 Search Results for
particle
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720183
EISBN: 978-1-62708-305-8
... Abstract Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface...
Abstract
Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface flaw detection techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
... Abstract This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720393
EISBN: 978-1-62708-305-8
... evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography...
Abstract
Fabricated powder metallurgy (P/M) parts are evaluated and tested at several stages during manufacturing for part acceptance and process control. The various types of tests included are dimensional evaluation, density measurements, hardness testing, mechanical testing, and nondestructive testing. This chapter is a detailed account of these testing methods. It describes the four most common types of defects in P/M parts, namely ejection cracks, density variations, microlaminations, and poor sintering. The chapter discusses the capabilities and limitations of various nondestructive evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography, computed tomography, gamma-ray density determination, and ultrasonic techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170100
EISBN: 978-1-62708-297-6
... Abstract This article explains how malleable iron is produced and how its microstructure and properties differ from those of gray and ductile iron. Malleable iron is first cast as white iron then annealed to convert the iron carbide into irregularly shaped graphite particles called temper...
Abstract
This article explains how malleable iron is produced and how its microstructure and properties differ from those of gray and ductile iron. Malleable iron is first cast as white iron then annealed to convert the iron carbide into irregularly shaped graphite particles called temper carbon. Although malleable iron has largely been replaced by ductile iron, the article explains that it is still sometimes preferred for thin-section castings that require maximum machinability and wear resistance. The article also discusses the annealing and alloying processes by which these properties are achieved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720001
EISBN: 978-1-62708-305-8
... testing methods discussed are liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, and ultrasonic testing. chemical analysis coordinate measuring machines hardness testing machine vision metallography nondestructive testing tensile...
Abstract
This chapter provides an overview of the various inspection methods used with metals and alloys, namely visual inspection, coordinate measuring machines, machine vision, hardness testing, tensile testing, chemical analysis, metallography, and nondestructive testing. The nondestructive testing methods discussed are liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, and ultrasonic testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720293
EISBN: 978-1-62708-305-8
... inspection. Casting defects including porosity, oxide films, inclusions, hot tears, metal penetration, and surface defects are reviewed. Liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, ultrasonic inspection, and leak testing for castings are...
Abstract
The inspection of castings normally involves checking for shape and dimensions, coupled with aided and unaided visual inspection for external discontinuities and surface quality. This chapter discusses methods for determining surface quality, internal discontinuities, and dimensional inspection. Casting defects including porosity, oxide films, inclusions, hot tears, metal penetration, and surface defects are reviewed. Liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, ultrasonic inspection, and leak testing for castings are discussed. The chapter provides information on the procedures involved in the inspection of castings that are limited to visual and dimensional inspections, weight testing, and hardness testing. It also discusses the use of computer equipment in foundry inspection operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720321
EISBN: 978-1-62708-305-8
... Abstract This chapter focuses on the inspection of steel bars for the detection and evaluation of flaws. The principles involved also apply, for the most part, to the inspection of steel wire. The nondestructive inspection methods discussed include magnetic particle inspection, liquid penetrant...
Abstract
This chapter focuses on the inspection of steel bars for the detection and evaluation of flaws. The principles involved also apply, for the most part, to the inspection of steel wire. The nondestructive inspection methods discussed include magnetic particle inspection, liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection. Eddy current and magnetic permeability are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720345
EISBN: 978-1-62708-305-8
..., magnetic particle inspection, liquid penetrant inspection, and radiographic inspection of resistance welded tubular products, seamless steel tubular products, and nonferrous tubular products. This chapter discusses the fundamental factors that should be considered in selecting a nondestructive inspection...
Abstract
Wrought tubular products are nondestructively inspected chiefly by eddy current techniques (including the magnetic flux leakage technique) and by ultrasonic techniques. The methods discussed in this chapter include eddy current inspection, flux leakage inspection, ultrasonic inspection, magnetic particle inspection, liquid penetrant inspection, and radiographic inspection of resistance welded tubular products, seamless steel tubular products, and nonferrous tubular products. This chapter discusses the fundamental factors that should be considered in selecting a nondestructive inspection method and in selecting from among the commercially available inspection equipment. The factors covered are product characteristics, nature of the flaws, extraneous variables, rate of inspection, end effect, mill versus laboratory inspection, specification requirements, equipment costs, and operating costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler...
Abstract
Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler metals and the types of flaws exhibited by brazed joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140071
EISBN: 978-1-62708-264-8
... effect of particle and solute drag. forging grain size heat treatment particle drag phase transformation recrystallization solute drag AS MENTIONED in Chapter 5, “Mechanical Properties,” it is important to keep the grain size of steels as small as possible in order to improve the...
Abstract
Grain size has a determining effect on the mechanical properties of steel and responds favorably to forging and heat treating. This chapter explains how to measure and quantify grain size and how to control it through thermal cycling and forging operations. It describes how surface tension acting on grain-boundary segments contributes to grain growth and how the formation of new grains, driven by phase transformations and recrystallization, lead to a reduction in average grain size. It also discusses the effect of alloying elements on grain growth rates, particularly the curbing effect of particle and solute drag.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
... and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420339
EISBN: 978-1-62708-310-2
... matrix strains in the lattice. These fine precipitate particles act as barriers to the motion of dislocations and provide resistance to slip, thereby increasing the strength and hardness. There are two requirements for precipitation hardening: (1) the process must result in an extremely fine...
Abstract
This chapter discusses the basic principles of precipitation hardening, an important strengthening mechanism in nonferrous alloys as well as stainless steel. It begins with a detailed review of the theory of precipitation hardening, then describes its application to aluminum alloys and nickel-base superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110447
EISBN: 978-1-62708-247-1
... permanent control. The section on ToF-SIMS, give some insight of what a state-of-the art machine can do in the area of 2D and 3D profiling. The final section is on particle identification. This is a relative new field with its own analytical challenges. The goal is to identify sources of particles in...
Abstract
There are several analytical methods available that can be used in-line on whole wafers as well as off-line on de-processed products that are returned from the field. These techniques are surface analytical techniques that can be used to characterize the bulk of the material. The main six methods used in semiconductor industry are: Auger spectroscopy, dynamic secondary ion mass spectroscopy, time of flight static secondary ion mass spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscope-EDX. This review specifically addresses ToF-SIMS and describes some typical examples of the application of Auger and SEM-EDX.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110563
EISBN: 978-1-62708-247-1
... FA. Wafer bonding (0-level packaging) is at the core of this, protecting the MEMS. It has been widely adopted in MEMS to provide hermeticity, reduce particles, and reduce costs by enabling MEMS to be used in low-cost plastic packages and to be diced on standard dicing machines. (A good textbook...
Abstract
This chapter discusses the various failure analysis techniques for microelectromechanical systems (MEMS), focusing on conventional semiconductor manufacturing processes and materials. The discussion begins with a section describing the advances in integration and packaging technologies that have helped drive the further proliferation of MEMS devices in the marketplace. It then shows some examples of the top MEMS applications and quickly discusses the fundamentals of their workings. The next section describes common failure mechanisms along with techniques and challenges in identifying them. The chapter also provides information on the testing of MEMS devices. It covers the two common challenges in sample preparation for MEMS: decapping, or opening up the package, without disturbing the MEMS elements; and removing MEMS elements for analysis. Finally, the chapter discusses the aspects of failure analysis techniques that are of particular interest to MEMS.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140165
EISBN: 978-1-62708-264-8
... 0.01% S at this temperature. This means that all of the sulfur impurities in a steel will be dissolved in the liquid prior to solidification, but basically none of the sulfur will be dissolved in the iron after it freezes. The sulfur ends up in the solid in the form of small particles, called...
Abstract
Engineering metals undergo many transformations in the course of production, none more critical than those that occur during solidification. This chapter discusses the process of solidification and its effects on the structure and properties of cast metals. It describes the relationship between cooling rate, grain size, grain shape, and phase structures. It explains how the transition from liquid to solid state creates the conditions under which microsegregation occurs, and how it impacts the distribution of alloying elements, carbides, and inclusions. The link between solidification and porosity is also discussed along with its detrimental effect on the mechanical properties of metal castings.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.9781627083126
EISBN: 978-1-62708-312-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420135
EISBN: 978-1-62708-310-2
... undergoes a eutectic reaction, producing α and β, where the β is almost pure lead. The microstructure of this alloy contains spherical β particles randomly distributed in a matrix of copper-rich α. Fig. 7.2 Monotectic reaction in copper-lead system. Source: Ref 7.2 as published in Ref 7.3...
Abstract
This chapter provides a brief overview of monotectic alloy systems and reactions. It begins by presenting a monotectic phase diagram and identifying important points, lines, and regions. It then describes the monotectic reactions that occur in copper-lead systems and the associated solidification structures. It also discusses the morphology of the microstructure produced during directional solidification and the classification criteria of low- and high-dome alloys.