Skip Nav Destination
Close Modal
Search Results for
p-n junctions
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 133 Search Results for
p-n junctions
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 4.13 A p-n junction rectifier has both p - and n -type regions (A). With a forward bias (B) both electrons and holes move toward the junction, allowing current to pass. With a negative bias (C) the region near the junction becomes depleted in carriers so no current can flow. Source
More
Image
in LADA and SDL: Powerful Techniques for Marginal Failures
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 30 For a 10ps laser pulse into a p-n junction there are two components of OBIC. Data for graph taken [29] .
More
Image
Published: 01 November 2019
Figure 93 (a) Schematic of a p-n junction showing nanoprobe location, primary e-beam interaction, and electron hole pair creation in depletion region. (b) A red colorized EBIC image of a p-n junction. From [14] .
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730037
EISBN: 978-1-62708-283-9
... the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals. electrical behavior light emitting diodes transistors p-n...
Abstract
This chapter examines some of the behaviors that suit materials for electrical and electronic applications. It begins by explaining how charge carriers move in metals and semiconductors and how properties such as conductivity, mobility, and resistivity are derived. It discusses the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals.
Image
Published: 01 November 2019
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110285
EISBN: 978-1-62708-247-1
... Example of Id vs Vgs, step Vds curves for an p-channel transistor. The threshold (Vt) and drive current (Id) at nominal operating voltage (Vnom) are measurable. Figure 14 Example of Id vs Vds, step Vgs curves for an n-channel transistor. The Linear region and Saturation region of operation...
Abstract
This article addresses the ancillary issues regarding the nanoprobing and characterization of transistors, probing copper metallization layers, and the various imaging techniques. The discussion includes several characterization examples of known transistor failure types, namely four probe transistor characterization, two probe transistor characterization, and probing and characterizing metallization issues. The imaging techniques discussed are those that are specific to atomic force nanoprober or scanning electron microscope based tools. They are current contrast imaging, scanning capacitance imaging, e-beam absorbed current imaging, e-beam induced current imaging, e-beam induced resistance change imaging, and active voltage contrast imaging.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110180
EISBN: 978-1-62708-247-1
... circuits. They are composed of a series of complementary (C-) MOS transistors as shown in Fig. 8 . It is important to take into account, that in real inverters the different signal intensity of p-und n-FET may have an influence when the PE contribution of the nFET and when the pFET is dominant. In high...
Abstract
Photon emission (PE) is one of the major optical techniques for contactless isolation of functional faults in integrated circuits (ICs) in full electrical operation. This article describes the fundamental mechanisms of PE in silicon based ICs. It presents the opportunities of contactless characterization for the most important electronic device, the MOS - Field Effect Transistor, the heart of ICs and their basic digital element, the CMOS inverter. The article discusses the specification and selection of detectors for proper PE applications. The main topics are image resolution, sensitivity, and spectral range of the detectors. The article also discusses the value and application of spectral information in the PE signal. It describes state of the art IC technologies. Finally, the article discusses the applications of PE in ICs and also I/O devices, integrated bipolar transistors in BiCMOS technologies, and parasitic bipolar effects like latch up.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110228
EISBN: 978-1-62708-247-1
... to locally heat transistors and interconnect. In 2003, Rowlette et al. [3] published the first description of Laser Assisted Device Alteration (LADA). Similar in setup to SDL, LADA employs a 1064nm laser to induce local currents in p-n junctions. Both techniques have the same core characteristics...
Abstract
Diagnosing the root cause of a failure is particularly challenging if the symptom of the failure is not consistently observable. This article focuses on Laser Assisted Device Alteration/Soft Defect Localization (LADA/SDL), a global fault isolation technique, for detecting such failures. The discussion begins with a section describing the three steps in LADA/SDL analysis setup: create the test loop with the fail flag and loop trigger, select the laser dwell time, and select the shmoo bias point. An overview of LADA/SDL workflow is then presented followed by a brief section on time-resolved LADA. The closing pages of the article consider in detail SDL laser interaction physics and LADA laser interaction physics.
Image
Published: 01 November 2019
drain/source junctions and the N and P – Well junctions. The scanning probe tip is grounded and current flows either into or out of the contacts to the probe tip based on the polarity of the silicon bias. The drain/source contacts for the nfet (dark) and pfet (white) are visible due to the current flow.
More
Image
Published: 01 November 2019
the surface. The Source/Drain junctions to the P-well are forward biased allowing conduction. The Gate is isolated by the gate oxide and the high resistance does not permit current conduction. For nfets, a positive voltage reverse biases the Source/Drain junctions. No current flows through the Source, Drain
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110461
EISBN: 978-1-62708-247-1
... junction leakage. (a) High angle annular dark field (HAADF) or mass contrast image from a planar sample and, (b) HAADF and Bright Field (BF) images from a cross-section sample extracted from the planar sample. In cross-sectional TEM, the thin section is perpendicular to the surface of the wafer...
Abstract
The ultimate goal of the failure analysis process is to find physical evidence that can identify the root cause of the failure. Transmission electron microscopy (TEM) has emerged as a powerful tool to characterize subtle defects. This article discusses the sample preparation procedures based on focused ion beam milling used for TEM sample preparation. It describes the principles behind commonly used imaging modes in semiconductor failure analysis and how these operation modes can be utilized to selectively maximize signal from specific beam-specimen interactions to generate useful information about the defect. Various elemental analysis techniques, namely energy dispersive spectroscopy, electron energy loss spectroscopy, and energy-filtered TEM, are described using examples encountered in failure analysis. The origin of different image contrast mechanisms, their interpretation, and analytical techniques for composition analysis are discussed. The article also provides information on the use of off-axis electron holography technique in failure analysis.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110196
EISBN: 978-1-62708-247-1
... A.H. , Charge Collection in p-n junctions Excited with Pulsed Infrared Lasers , IEEE transaction on Nuclear Sciences , Vol. 40 , No. 6 , 1694 - 1702 , ( 1993 ). 10.1109/23.273491 7. Joseph T.W. , Berry A.L. , and Bossmann B. , Infrared Laser Microscopy of Structures...
Abstract
This article reviews the basic physics behind active photon injection for local photocurrent generation in silicon and thermal laser stimulation along with standard scanning optical microscopy failure analysis tools. The discussion includes several models for understanding the local thermal effects on metallic lines, junctions, and complete devices. The article also provides a description and case study examples of multiple photocurrent and thermal injection techniques. The photocurrent examples are based on Optical Beam-Induced Current and Light-Induced Voltage Alteration. The thermal stimulus examples are Optical Beam-Induced Resistance Change/Thermally-Induced Voltage Alteration and Seebeck Effect Imaging. Lastly, the article discusses the application of solid immersion lenses to improve spatial resolution.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110485
EISBN: 978-1-62708-247-1
... substrate while the bright and dark striped region at the buried plate /p -substrate interface is the p-n junction’s depletion region. Figure 17 Topographic and corresponding SCM dopant profile images of EDRAM cells in cross section. The arsenic doped, n-type buried plate region shows up clearly...
Abstract
Scanning Probe Microscope (SPM) has an increasing important role in the development of nanoscale semiconductor technologies. This article presents a detailed discussion on various SPM techniques including Atomic Force Microscopy (AFM), Scanning Kelvin Probe Microscopy, Scanning Capacitance Microscopy, Scanning Spreading Resistance Microscopy, Conductive-AFM, Magnetic Force Microscopy, Scanning Surface Photo Voltage Microscopy, and Scanning Microwave Impedance Microscopy. An overview of each SPM technique is given along with examples of how each is used in the development of novel technologies, the monitoring of manufacturing processes, and the failure analysis of nanoscale semiconductor devices.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110613
EISBN: 978-1-62708-247-1
... channel region. Since the n + -doped drain has a positive voltage with respect to the p -well, a reversed bias pn junction exists here between the drain and p -well. Fig. 2b shows this state when V GS > V t , but V D > V G - V t Fig. 2b Carrier inversion in saturated bias...
Abstract
Electronics spans a number of devices, their configurations, and properties. A challenge is to identify those electronic subjects essential for failure analysis. This article reviews the normal operation and terminal characteristics of MOSFET. It describes the electronic behavior of bridges, opens, and parametric delay defects, which is essential for understanding the symptoms of a failing IC. These electronic principles are then applied to a CMOS failure analysis technique using a power supply signature analysis.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110652
EISBN: 978-1-62708-247-1
... underlying physics for the thermal failure of P/N junctions. The dependence of failure power upon pulse length for high current square waveform pulses is illustrated in Fig. 1 and described by the following one-dimensional electro-thermal equation known as the Wunsch-Bell Model [6] . Figure 1...
Abstract
In the Semiconductor I/C industry, it has been well documented that the proportion of factory and customer field returns attributed to device damage resulting from electrical over-stress (EOS) and electro-static discharge (ESD) can amount to 40 to 50%. This study entailed EOS and ESD simulation using a variety of models, namely the Human Body Model (HBM), the Charged Device Model (CDM) and the so-called Machine Model (MM), and then conducting electrical and physical failure analysis and comparing the results with documented analyses performed on customer field returns and factory failures. It is shown that a distinction can be made between EOS and ESD failures and between the characteristic failure signatures produced by the ESD models. The CDM physical failure location is at the input buffer and in the gate oxide, where as both HBM and MM failures occur mostly in the contacts at the input protection structures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860515
EISBN: 978-1-62708-348-5
... areas with large temperature gradients, and (c) interfacing low-voltage signals with ambient temperature junctions and switches so that spurious voltages are minimized. 14.2.1 Transducer-Specimen Contact Perhaps the most difficult instrumentation problem in cryogenic measurement systems...
Abstract
This chapter discusses three measurements parameters: temperature, strain, and magnetic field strength. It stresses the measurement of temperature because it is the primary variable in nearly all low-temperature material properties. The chapter contains information on methods and auxiliary materials. Areas of frequent concern, such as thermal contact, heat leak, thermal anchoring, thermal conductivity of greases, insulators, lead wires, ground loops, and feedthroughs are also reviewed. The chapter provides an overview and historical development of temperature scales because the practical use of all thermometers is associated with some approximation of the thermodynamic temperature scale. A short section is devoted to types of temperature measuring devices. The characteristics of commercially available resistance-type strain gauges at low temperatures are stressed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090109
EISBN: 978-1-62708-462-8
..., Polysilicon, Si x Ge 1-x , symmetric and asymmetric p-n junctions), b) robust calibration methodology to allow extrapolation beyond standard sample limits, and c) improvement in calibration protocols to extend beyond the published minimum silicon thickness of 10 nm below which parasitic series resistances...
Abstract
The first step in die-level failure analysis is to narrow the search to a specific circuit or transistor group. Then begins the post-isolation process which entails further localizing the defect, determining its electrical, physical, and chemical properties, and examining its microstructure in order to identify the root cause of failure. This chapter assesses the tools and techniques used for those purposes and the challenges brought on by continued transistor scaling, advanced 3D packages, and new IC architectures. The areas covered include sample preparation, nanoprobing, microscopy, FIB circuit edit, and scanning probe microscopy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220143
EISBN: 978-1-62708-341-6
... accurate temperature measurements. Fig. 7.1 “Open-prod” proximity thermocouple for making temperature measurements. From N. V. Ross, Proc. Sixth Biennial IEEE Conference on Electric Heating , IEEE, New York, 1963, p 29 ( Ref 1 ) The open-prod thermocouple is most effective with metals which...
Abstract
This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional controllers and heat-regulating devices. Integration of control functions is illustrated with examples related to heating of steel slabs, surface hardening of steel parts, vacuum induction melting for casting operations, and process optimization for electric-demand control. Distributed control within larger manufacturing systems is discussed. The chapter also covers nondestructive techniques for process control and methods for process simulation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390019
EISBN: 978-1-62708-459-8
... of surface departure from the mean line. Two different surface roughness parameters are in common use: (3.1) R a = 1 l ∫ 0 l | z | d l = 1 N ∑ i = 1 N | z i | , and (3.2) R q = ( 1 l ∫ 0 l z 2 d l...
Abstract
This chapter examines the surface interactions that occur during metal forming operations at both the macroscopic and microscopic scale. It describes the measurement and characterization of surface profiles based on form error, waviness, and roughness. It explains how workpiece surfaces become rougher or smoother due to the effects of deformation, tooling interactions, and lubricant film thickness. It familiarizes readers with the concept of nominal contact, the role of asperities, and the effects of interface pressure, plasticity index, shear stress, and bulk strain rate. It also reviews the two basic friction rules applicable to metal forming and presents advanced friction models that account for the transition between Coulomb and Tresca behavior and the effects of lubrication.
1