1-20 of 1461 Search Results for

oxidation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080005
EISBN: 978-1-62708-304-1
... Abstract Many metallic components, such as retorts in heat treat furnaces, furnace heater tubes and coils in chemical and petrochemical plants, waterwalls and reheater tubes in boilers, and combustors and transition ducts in gas turbines, are subject to oxidation. This chapter explains how...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310057
EISBN: 978-1-62708-286-0
... Abstract Stainless steel retains strength and has excellent oxidation resistance from room temperature to nearly 1000 deg C relative to competitive materials. This chapter focuses on the high-temperature oxidation of stainless steel by oxygen or water vapor. It begins by discussing...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560361
EISBN: 978-1-62708-291-4
... Abstract This chapter discusses the thermally induced changes that occur on the surface of steel exposed to different environments. It explains how oxide scales form during heat treating and how factors such as temperature, composition, and surface finish affect growth rates, grain structure...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770011
EISBN: 978-1-62708-337-9
... Abstract Gas carburizing is known to promote internal oxidation in steel which can adversely affect certain properties. This chapter discusses the root of the problem and its effect on component lifetime and performance. It explains that gas-carburizing atmospheres contain water vapor...
Image
Published: 01 March 2002
Fig. 13.8 Effects of nonuniform oxidation on superalloys. (a) Accelerated oxidation of MC carbide (arrow) at surface of MAR-M-200 nickel-base superalloy at 927 °C (1700 °F), and (b) accelerated oxidation of grain boundary in U-700 nickel-base superalloy at 760 °C (1400 °F) More
Image
Published: 01 June 2008
Fig. 29.11 Relative oxidation resistance of alloys 601, 600, and 800. Oxidation tests at 1150 °C (2100 °F), 50 h cycles, cool to RT between cycles. Source: Ref 3 More
Image
Published: 01 November 2007
Fig. 13.2 Oxidation of chromium steels at 1000 °C (1830 °F). Source: Ref 13.3 , p 461 More
Image
Published: 01 January 2017
Fig. 1.17 Relationship between the average crack propagation rate and the oxidation (i.e., dissolution and oxide growth) kinetics on a straining surface for several ductile alloy/aqueous environment systems More
Image
Published: 01 December 2001
Fig. 23 Effect of silicon content on the oxidation behavior of gray irons tested at 800 °C (1470 °F). Source: Ref 26 More
Image
Published: 01 December 2001
Fig. 15 Effect of silicon on the oxidation of ferritic ductile iron in air at 650 °C (1200 °F). Source: Ref 10 More
Image
Published: 01 December 2001
Fig. 5 Effect of chromium content on the oxidation behavior of alloy cast irons More
Image
Published: 01 December 2001
Fig. 6 Oxidation behavior of alloyed cast irons held at temperature for 200 h More
Image
Published: 01 December 2001
Fig. 30 Oxidation behavior of plain low-carbon steel in air at 430, 540, 650, and 760 °C (800, 1000, 1200, and 1400 °F). Source: Ref 10 More
Image
Published: 01 December 2001
Fig. 31 Oxidation of carbon steel and HSLA steel in air. Source: Ref 11 , 12 More
Image
Published: 01 December 2001
Fig. 32 Effect of chromium and/or silicon on the oxidation resistance of steels in air. Source: Ref 13 More
Image
Published: 01 December 2001
Fig. 20 Effect of various elements on the oxidation resistance of stainless steels. Source: Ref 4 More
Image
Published: 01 December 2001
Fig. 21 Cyclic oxidation resistance of several stainless steels and nickel-base alloys in air at 980 °C (1800 °F) More
Image
Published: 01 November 2007
Fig. 3.1 A Ni-Cr alloy furnace heater coil suffering extensive internal oxidation attack with little surface scaling after service for 4 to 5 years at temperatures below 900 °C (1650 °F). Source: Ref 1 More
Image
Published: 01 November 2007
Fig. 3.5 Different oxidation kinetics. Source: Ref 11 More
Image
Published: 01 November 2007
Fig. 3.6 Oxidation behavior of plain low-carbon steel in air at 430, 540, 650, and 760 °C (800, 1000, 1200, and 1400 °F). Source: Ref 12 More