Skip Nav Destination
Close Modal
Search Results for
optical properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 408 Search Results for
optical properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240303
EISBN: 978-1-62708-251-8
..., thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table. physical properties electrical properties thermal properties magnetic properties optical properties metals THE PHYSICAL PROPERTIES of a material are those...
Abstract
The physical properties of a material are those properties that can be measured or characterized without the application of force and without changing material identity. This chapter discusses in detail the common physical properties of metals, namely density, electrical properties, thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230027
EISBN: 978-1-62708-298-3
... Abstract This chapter provides a thorough review of the crystal structure of beryllium and its elastic, thermal, and nuclear properties. It also includes information on electrical and optical properties and an extensive amount of data in the form of tables and plots. beryllium...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190147
EISBN: 978-1-62708-296-9
... can be observed using metallographic techniques. It describes, and in many cases illustrates, the characteristic shapes, colors, and optical properties associated with aluminum alloy intermetallic phases and how they can be enhanced through selective etching. It provides an atlas of microstructures...
Abstract
Intermetallic phase precipitates in aluminum alloys can often be identified without resorting to chemical analysis. Very often the determination can be made based on the shape, color, and refractive properties of the particular phase. This chapter explains how these visual attributes can be observed using metallographic techniques. It describes, and in many cases illustrates, the characteristic shapes, colors, and optical properties associated with aluminum alloy intermetallic phases and how they can be enhanced through selective etching. It provides an atlas of microstructures comparing the effects of selective etching procedures on various phase constituents in cast aluminum-silicon alloys. The compilation of images demonstrates the use of two types of reagents: those that reveal discontinuities in crystal orientation and grain boundaries, and those that reveal differences in chemical composition.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780177
EISBN: 978-1-62708-281-5
... of optical components. If a material is tested for transmission, haze, yellowness, and refractive index, knowledge of its optical properties is nearly complete. For optical components, surface irregularity, birefringence, and internal contamination must also be considered. These characteristics...
Abstract
This article is a brief account of various factors pertinent to the characterization of materials and analysis of optical components, namely transmission, haze, yellowness, refractive index, surface irregularity, birefringence, internal contamination, surface gloss, and color. In addition, details on ad hoc tests used for determining the acceptability of a plastic part for its application are provided, along with typical examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials. References References 1. Halpin J.C. , The Role of the Polymeric...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
... materials to impart a wide range of properties that are either not present or present at insufficient levels in the base material. These properties can include but are not limited to electrical conductivity, optical enhancement (e.g., reflectivity), corrosion resistance, lubricity, and wear resistance. Due...
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Image
Published: 01 November 2010
Fig. D.12 Needles of sigma phase are longer and better resolved. Sigma formation adversely affects high-temperature tensile properties. Optical microscope, original magnification 500×. Condition: Heat treated—solution annealed 4 h at 1175 °C (2150 °F), aged 4 h at 1080 °C (1975 °F), aged 24
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500301
EISBN: 978-1-62708-317-1
..., how acoustic emission, ultrasonic, and eddy current sensors detect tool breakage and part defects such as cracks, and how roller ball and optical sensors measure material flow. It also discusses the role of draw-in, wrinkle, oil-monitoring, and vision sensors and explains how material properties can...
Abstract
This chapter discusses the types of sensors used in sheet forming operations and the information they provide. It explains how force sensors protect equipment from overloads due to tool wear, friction, and misfeeds, how displacement and proximity sensors help to prevent die crashes, how acoustic emission, ultrasonic, and eddy current sensors detect tool breakage and part defects such as cracks, and how roller ball and optical sensors measure material flow. It also discusses the role of draw-in, wrinkle, oil-monitoring, and vision sensors and explains how material properties can be derived in real time from various sensor outputs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230001
EISBN: 978-1-62708-298-3
... Abstract Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys...
Abstract
Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys. It also has excellent thermal properties, low atomic mass, a small x-ray absorption cross section, and a large neutron scattering cross section. This brief introductory chapter provides an overview of the unique qualities of beryllium along with typical applications and uses.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030177
EISBN: 978-1-62708-349-2
.... As a result, the phase separation of the rubber may be incomplete, which can lead to ambient- and elevated-temperature property degradation. In the following figures, ultrathin sections were developed from the composite materials to use transmitted-light optical microscopy contrast techniques to determine...
Abstract
The second-generation composite materials were added to increase the strain to failure of the primary phase and/or create a dispersed second phase, thereby enhancing the fracture toughness of the thermosetting matrix. These matrices offered novel design capabilities for composites in a variety of aircraft applications. To improve the damage tolerance of composite materials even further, an engineering approach to toughening was used to modify the highly stressed interlayer with either a tougher material or through the use of preformed particles, leading to the third generation of composite materials. This chapter discusses the development, processes, application, advantages, and disadvantages of dispersed-phase toughening of thermoset matrices. Information on the processes of particle interlayer toughening of composite materials is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550193
EISBN: 978-1-62708-307-2
... and coatings, and health and safety concerns. aluminum-beryllium alloys beryllium corrosion protection forming powder consolidation powder production BERYLLIUM is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components...
Abstract
Beryllium is an extraordinary metal with an unusual combination of physical and mechanical properties. It has low density, high stiffness, and excellent dimensional stability. It is also transparent to x-rays and can be machined to extremely close tolerances. This chapter discusses the properties, compositions, and processing characteristics of beryllium and its alloys. It provides information on powder production and consolidation, commercial designations and grades, wrought products, and forming processes. It also discusses the issue of corrosion, the use of protective treatments and coatings, and health and safety concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000139
EISBN: 978-1-62708-313-3
... resolved. Sigma formation adversely affects high-temperature tensile properties. Optical microscope, original magnification 500×. Condition: Heat treated—solution annealed 4 h at 1175 °C (2150 °F), aged 4 h at 1080 °C (1975 °F), aged 24 h at 845 °C (1550 °F), and aged 16 h at 760 °C (1400 °F), then held...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030211
EISBN: 978-1-62708-349-2
... Crystalline Morphology of PEEK, Interface Bond Strength, and In-Plane Mechanical Properties of Carbon/PEEK Composites , J. Appl. Polym. Sci. , Vol 84 , 2002 , p 1155 – 1167 10.1002/app.10406 4. Lu D. , Yang Y. , Zhuang G. , Zhang Y. , and Li B. , A Study of High-Impact...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This chapter focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140021
EISBN: 978-1-62708-264-8
... Abstract The mechanical properties of steel are strongly influenced by the underlying microstructure, which is readily observed using optical microscopy. This chapter describes common room-temperature steel microstructures and how they are achieved via heat treatment. It discusses...
Abstract
The mechanical properties of steel are strongly influenced by the underlying microstructure, which is readily observed using optical microscopy. This chapter describes common room-temperature steel microstructures and how they are achieved via heat treatment. It discusses the production of hypo- and hypereutectoid steels and the effect of cooling rate on microstructure. It also examines quenched steels and the phase transformations associated with rapid cooling. It describes the development of lath and plate martensite, retained austenite, and bainite and how to identify the various phases. The chapter concludes with a brief review of spheroidized microstructures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... Abstract This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most...
Abstract
This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most important properties of polymers and the most significant influences of structure on those properties are covered. The article also includes some general information on the classification and naming of polymers and plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... Abstract This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560127
EISBN: 978-1-62708-353-9
... and Their Properties , Handbook 3310, Bethlehem Steel Corp., Bethlehem, PA, Ref 8 ) Fig. 5-7 Schematic illustration of measures of the toughness of a steel based on the impact test Fig. 5-11 (Part 1) Optical micrographs showing the effect of tempering temperature 1 hr on the microstructure...
Abstract
This chapter first examines the tempering behavior of plain carbon steels and then that of alloy steels. Next, some correlations are examined which allow estimations of the tempered hardness from the chemical compositions, tempering temperature and tempering time. The chapter then describes the effect of tempering on the mechanical properties of plain carbon steels and the microstructure of plain carbon steels. It shows examples of the structure of plain carbon steels. Additionally, the chapter explains the stages and kinetics of tempering in alloy steels and plain carbon steels. It also describes some methods of estimating the hardness. Finally, the chapter discusses the important problem of temper embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
..., WA ) 3. Saenz N.T. , Ultrathinning Section Techniques for the Characterization of Brittle Materials , Microstruct. Sci. , Vol 18 , 1991 , p 147 – 159 4. Gammon L.M. , Optical Techniques for Microstructural Characterization of Fiber-Reinforced Polymers , Microstruct. Sci...
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030137
EISBN: 978-1-62708-349-2
... the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This chapter describes the optical...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This chapter describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
1