Skip Nav Destination
Close Modal
Search Results for
optical
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 945 Search Results for
optical
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780177
EISBN: 978-1-62708-281-5
... Abstract This article is a brief account of various factors pertinent to the characterization of materials and analysis of optical components, namely transmission, haze, yellowness, refractive index, surface irregularity, birefringence, internal contamination, surface gloss, and color...
Abstract
This article is a brief account of various factors pertinent to the characterization of materials and analysis of optical components, namely transmission, haze, yellowness, refractive index, surface irregularity, birefringence, internal contamination, surface gloss, and color. In addition, details on ad hoc tests used for determining the acceptability of a plastic part for its application are provided, along with typical examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
..., and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials. dispersed-phase toughening honeycomb structure infusion...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110042
EISBN: 978-1-62708-247-1
... Abstract Moore's Law has driven many degree circuit features below the resolving capability of optical microscopy. Yet the optical microscope remains a valuable tool in failure analysis. This article describes the physics governing resolution and useful techniques for extracting the small...
Abstract
Moore's Law has driven many degree circuit features below the resolving capability of optical microscopy. Yet the optical microscope remains a valuable tool in failure analysis. This article describes the physics governing resolution and useful techniques for extracting the small details. It begins with the basic microscope column and construction. The article discusses microscope adjustments, brightfield and darkfield illumination, and microscope concepts important to liquid crystal techniques. It also discusses solid immersion lenses, infrared and ultraviolet microscopy and concludes with laser microscopy techniques such as thermal induced voltage alteration and external induced voltage alteration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110132
EISBN: 978-1-62708-247-1
... review of conventional TDR and its application limitations to advanced packages in semiconductor industry. The article introduces electro optical terahertz pulse reflectometry (EOTPR) and discusses how its improvements of using high frequency impulse signal addressed application challenges and quickly...
Abstract
Time-domain based characterization methods, mainly time-domain reflectometry (TDR) and time-domain transmissometry (TDT), have been used to locate faults in twisted cables, telegraph lines, and connectors in the electrical and telecommunication industry. This article provides a brief review of conventional TDR and its application limitations to advanced packages in semiconductor industry. The article introduces electro optical terahertz pulse reflectometry (EOTPR) and discusses how its improvements of using high frequency impulse signal addressed application challenges and quickly made it a well-adopted tool in the industry. The third part of this article introduces a new method which combines impulse signal and the TDT concept, and discusses a combo TDR and TDT method. Cases studies and application notes are shared and discussed for each technique. Application benefits and limitations of these techniques (TDR, EOTPR, and combo TDR/TDT) are summarized and compared.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110153
EISBN: 978-1-62708-247-1
... to ceramic cavity devices, injection molded parts, and ball grid arrays. backside preparation ball grid arrays ceramic cavity devices injection molded parts milling optics polishing thinning This tutorial will assist the analyst in making decisions on backside thinning and polishing...
Abstract
The need for precise targeted interactive surgery on boards or modules is the main driver of backside preparation technology. This article assists the analyst in making decisions on backside thinning and polishing requirements. Thinning of the substrates can be accomplished by flat lapping, laser assisted chemical etch, plasma reactive ion etch, and CNC based milling and polishing. The article discusses the general characteristics, key principles, advantages, and disadvantages of these processes. It also contains case studies that illustrate the application of these processes to ceramic cavity devices, injection molded parts, and ball grid arrays.
Image
Published: 01 September 2008
Fig. 34 Optical micrograph of a portion of the crack along a cross section of the fractured bolt head. Note the decarburization at the surface of the crack. Source: Ref 19
More
Image
in Mechanisms and Causes of Failures in Heat Treated Steel Parts
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 29 Optical micrograph of an oxide-lined seam in a piece of steel wire
More
Image
Published: 01 September 2008
Fig. 11 Optical micrograph of the transverse section of a thread fillet machined by surface rolling. The material consists of duplex stainless steel
More
Image
Published: 01 June 2016
Fig. 2.1 Optical micrographs of copper coatings prepared by (a) arc spraying and (b) cold spraying
More
Image
Published: 01 June 2016
Fig. 2.18 Optical micrographs of cold-sprayed copper coatings on thermally sprayed Al 2 O 3 coatings. (a) Copper on a cold-sprayed aluminum bond coat, processed onto a D-gun-sprayed Al 2 O 3 coating using a nonheated substrate. (b) Copper directly cold sprayed onto a suspension high-velocity
More
Image
Published: 01 June 2016
Fig. 5.1 Representative optical micrographs showing (a, b) comparison of overall coating thickness and top layer thickness between a nitrogen-sprayed and a helium-sprayed copper coating, respectively; (c, d) image analysis to evaluate porosity in pure copper coating; and (e, f) interface
More
Image
Published: 01 June 2016
Fig. 5.2 (a) Optical micrographs depicting variation in porosity with processing parameters for a Ti-64 coating on a SS304 substrate. (b, c) Variation of porosity with thickness and gas pressure as measured from the optical micrograph. Source: Ref 5.10
More
Image
Published: 01 June 2016
Fig. 5.3 Optical micrographs with etched aluminum coatings as a function of gas temperature at (a) 204 °C (400 °F) and (b) 315 °C (600 °F), revealing the extent of particle deformation. (c) Micrographs used to determine the nature of bonding of the coating. Source: Ref 5.12
More
Image
Published: 01 June 2016
Fig. 5.19 (a) Optical micrograph of as-sprayed coating-substrate interface along with (b) corresponding transmission electron micrographs identifying phase evolution and deformation in vicinity of the coating-substrate interface, and (c) interface evolution after heat treatment. In both cases
More
Image
Published: 01 June 2016
Fig. 5.33 Root mean square surface roughness ( R a ) measurements. (a, b) Optical micrographs showing variation in surface roughness from a helium-sprayed (4 MPa, or 580 psi, and 600 °C, or 1110 °F) versus nitrogen-sprayed (5 MPa, or 725 psi, and 800 °C, or 1470 °F) IN625 coating on AISI
More
Image
in Metallographic Technique: Micrography
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 5.1 Schematic illustration of lighting methods in metallographic optical microscopes: (a) oblique or inclined illumination; (b) normal illumination or illumination parallel to the optical axis—the most common method; (c) dark field illumination.
More
Image
in Metallographic Technique—Electron Microscopy and Other Advanced Techniques
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 6.5 Optical analogy useful for the interpretation of an SE image in an SEM. The resulting image is analogous to an optical image that would be obtained if the sample were illuminated with a light source positioned at the SE detector and observed from the top of the microscope column
More
Image
in Solidification, Segregation, and Nonmetallic Inclusions
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 8.31 Severe porosity in a steel casting. Optical micrograph. No etching.
More
Image
Published: 01 September 2008
Fig. 15 Optical microscopy of grain structure of electroslag weld metal. Original magnification: 50×
More
1