Skip Nav Destination
Close Modal
Search Results for
open-die forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 181 Search Results for
open-die forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 November 2013
Fig. 10 Open-die forging. Source: Ref 9 Definition Open-die forging is a hot forging process in which metal is shaped by hammering or pressing between flat or simple contoured dies. Equipment Hydraulic presses, hammers Materials Carbon and alloy steels, aluminum alloys
More
Image
Published: 01 November 2013
Image
Published: 01 October 2011
Fig. 6.10 Ingot breakdown with a two-column 1000-ton pull-down open-die forging press. Cast ingots positioned with 6-ton railbound manipulator. Courtesy of AK Steel
More
Image
Published: 01 August 1999
Fig. 11 Macroetched transverse section of an 8 × 8 × 24 in. open-die forging of 7075-T6 showing the location of three SCC test specimens. They had widely different stress-corrosion resistance as would be expected from their grain structure orientation. See the text for an explanation
More
Image
in Forging Processes: Variables and Descriptions
> Cold and Hot Forging<subtitle>Fundamentals and Applications</subtitle>
Published: 01 February 2005
Image
Published: 01 June 2008
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining. forging processes 2.1 Introduction In forging, an initially simple part—a billet, for example—is plastically deformed between...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
..., including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... forming is the nature of the resulting deformation. Bulk forming operations typically involve multidirectional deformation throughout the volume of the worked mass. The generic types of bulk working methods include extrusion, forging, rolling, and drawing. Some methods, such as open-die forging and radial...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Image
Published: 01 March 2002
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... the properties and homogeneity of the microstructure; therefore, forging is often used to prepare cast ingots for other bulk deformation processes, such as hot rolling; and (2) forging is also a major method of producing semifinished or near-net shapes. Forging processes can be described as open-die forging...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280091
EISBN: 978-1-62708-267-9
... components are produced by: Die forging Upsetting Extrusion forging Roll forging Swaging (or versions using proprietary rotary forging machines) Ring rolling Two or more of these methods used in sequence The die forging categories can be subdivided into: Open-die forgings...
Abstract
This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping, the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also discusses the forgeability of alloys, addresses problems and practical issues, and describes the forging of gas turbine disks. On the topic of forming, the chapter discusses the processes involved, the role of alloying elements, and the effect of alloy condition on formability. It addresses practical concerns such as forming speed, rolling direction, rerolling, and heat treating precipitation-hardened alloys. It presents several application examples involving carbide-hardened cobalt-base and other superalloys, and it concludes with a discussion on superplasticity and its adaptation to commercial forging and forming operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
..., magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. Flaws Originating in the Ingot Many large open-die forgings are forged directly from ingots. Most closed-die forgings and upset forgings are produced from billets, rolled bar stock, or preforms. Many, though...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040141
EISBN: 978-1-62708-300-3
... or as a preforming step, solid shafts with varying or constant diameter along the length and tubes with internal or external varying diameter. All these parts require symmetrical reduction of cross sections. For some of these applications, open-die forging presses cannot be used economically because they are limited...
Abstract
Prior to forging, it is often necessary to preform billet stock to achieve adequate material distribution. This chapter discusses the equipment used for such operations, including transverse rolling machines, electric upsetters, ring-rolling mills, horizontal presses, and rotary (orbital) and radial forging machines. It describes their basic operating principles as well as advantages and disadvantages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120033
EISBN: 978-1-62708-269-3
... components. Forming is the primary way in which shapes derived from plate or sheet are prepared. Forging General Aspects Titanium alloy forgings are produced by all the forging methods currently available. These methods include open-die, closed-die, rotary forging, and others. Selection...
Abstract
This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature, pressure, and strain rate influence microstructure and properties and provides recommended ranges for commonly formed and forged titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250129
EISBN: 978-1-62708-345-4
... of gear blanks which would subsequently be cut/machined into the final desired configuration. Gear blanks have been produced by open-die forging, closed-die forging ( Fig. 7 ), and hot upset forging. During the past thirty-five years there has been considerable research and development aimed at producing...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040211
EISBN: 978-1-62708-300-3
... by the cavity in the closed-die upset, deformation is less than in the open upset. Hence, a modification of the traditional slab method is made to account for the reduced deformation zone to predict the forging load. Equation 17.4(a) is modified and presented as [ Altan et al., 1996 ]: (Eq 17.4b) L...
Abstract
This chapter discusses the process of cold forging and its effect on various materials. It describes billet preparation and lubrication procedures, cold upsetting techniques, and the use of slab analysis for estimating cold forging loads. It likewise describes extrusion processes, explaining how to estimate friction and flow stress and predict extrusion loads and energy requirements. The chapter also discusses the tooling used in cold forging, the parameters affecting tool life, and the relative advantages of warm forging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220353
EISBN: 978-1-62708-259-4
.... It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel. closed die forging hot working inclusions open...
Abstract
This chapter discusses the effects of hot working on the structure and properties of steel. It explains how working steels at high temperatures promotes diffusion, which helps close cavities and pores, and how it changes the shape and distribution of segregates, offsetting their effect. It describes the effect of hot working on nonmetallic inclusions and the many properties influenced by them. It discusses the recrystallization mechanism by which hot working produces microstructural changes and explains how to control it by adjusting temperature, degree of reduction, and cooling rates. It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
... (roll), open-die tooling Hot forging —temperature, strain and strain rate, forge center cell, loading and transfer device, lubrication, parts collection, and inspection Trimming —trimmer unit and capacity, flash removal, temperature trace of product flashline Causes of defects during hot...
Abstract
This article presents six case studies of failures with steel forgings. The case studies covered are crankshaft underfill; tube bending; spade bit; trim tear; upset forging; and avoidance of flow through, lap, and crack. The case studies illustrate difficulties encountered in either cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design, and forging tolerances. Wear, plastic deformation processes, and laws of friction are introduced as a group of subjects that have been considered in the case studies.