Skip Nav Destination
Close Modal
Search Results for
numerical method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 559 Search Results for
numerical method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
..., and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved. crack growth creep...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Image
Published: 01 August 2005
Fig. 1.36 Effect of boundary conditions on the solution of a cantilever problem. (a) The beam deflection and bending stresses for a uniformly loaded cantilever can be solved by a closed-form equation as shown. (b) A supported cantilever beam is statically indeterminate, and numerical methods
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040091
EISBN: 978-1-62708-300-3
... Abstract There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods...
Abstract
There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods, covering basic principles, implementation, and advantages and disadvantages in various applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860133
EISBN: 978-1-62708-348-5
... caused by composition, processing, and heat-treatment differences. Numerous graphs illustrate the qualitative and quantitative effects of these variables. Measurement methods and associated accuracies and pertinent empirical correlations are presented. density electrical resistivity specific heat...
Abstract
This chapter presents basic principles and the theoretical results of heat transport in solids. Thermal conductivity and thermal diffusivity are the principal properties discussed. Discussions are also included on the effects of temperature, magnetic field, and metallurgical variations caused by composition, processing, and heat-treatment differences. Numerous graphs illustrate the qualitative and quantitative effects of these variables. Measurement methods and associated accuracies and pertinent empirical correlations are presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780295
EISBN: 978-1-62708-281-5
... on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus...
Abstract
In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400073
EISBN: 978-1-62708-316-4
... Abstract This chapter describes the formability and forming characteristics of low-carbon sheet steels, coated sheet steels, stainless steels, and aluminum and magnesium alloys. It provides property data as well as flow stress curves for numerous grades of each material and explains how...
Abstract
This chapter describes the formability and forming characteristics of low-carbon sheet steels, coated sheet steels, stainless steels, and aluminum and magnesium alloys. It provides property data as well as flow stress curves for numerous grades of each material and explains how composition, microstructure, and processing methods influence forming behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200048
EISBN: 978-1-62708-354-6
... Abstract Casting is one of the basic processes used for the shaping of steel. It is economical in both cost and time of production. Numerous components are produced from cast steel because of the advantages of the process. These advantages can best be described under the following headings...
Abstract
Casting is one of the basic processes used for the shaping of steel. It is economical in both cost and time of production. Numerous components are produced from cast steel because of the advantages of the process. These advantages can best be described under the following headings: design flexibility, metallurgical versatility and quality, and economic benefits. This chapter looks at these advantages of steel castings. Of major interest is the comparison of cast steel with wrought steel and weldments in terms of properties, availability, cost, and quality. The chapter also includes information on cast steel compared to other cast metals and other methods of steel fabrication.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250089
EISBN: 978-1-62708-345-4
... pairs of gears, beyond which the Revacycle method is cheaper. Spiral Bevel Gears Spiral, Zerol, and hypoid bevel gears are cut in the same type of equipment and by the same general procedures. (Hypoid gears are by far the most numerous, being used in quantities exceeding those of spiral and Zerol...
Abstract
Metal removal processes for gear manufacture can be grouped into two general categories: rough machining (or gear cutting) and finishing (or high-precision machining). This chapter discusses the processes involved in machining for bevel and other gears. The chapter describes the type of gear as the major variable and discusses the machining methods best suited to specific conditions. Next, the chapter provides information on gear cutter material and nominal speeds and feeds for gear hobbing. Further, it describes the cutting fluids recommended for gear cutting and presents a comparison of steels for gear cutting. The operating principles of computer numerical control and hobbing machines are also covered. This is followed by sections that discuss the processes involved in grinding, honing, and lapping of gears. Finally, the chapter provides information on the superfinishing of gears.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780093
EISBN: 978-1-62708-268-6
... of these items. This chapter reviews these methods. There are numerous techniques and technologies available for examining and analyzing components and subassemblies, which are categorized as follows: Optical approaches for visually assessing suspected items under both normal and magnified conditions...
Abstract
After the fault-tree, a failure-cause identification method has identified potential failure causes and the failure analysis team has prepared a failure mode assessment and assignment (FMA&A). The team knows specifically what to search for when examining components and subassemblies from the failed system. There are numerous techniques and technologies available for examining and analyzing components and subassemblies, which are categorized as follows: optical approaches, dimensional inspection and related approaches, nondestructive test approaches, mechanical and environmental approaches, and chemical and composition analysis for assessing material characteristics. This chapter is a detailed account of the working principle and the steps involved in these techniques and technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350043
EISBN: 978-1-62708-315-7
... Abstract This chapter discusses the basic principles of friction and the factors that must be considered when determining its effect on moving bodies in contact. It provides an extensive amount of friction data, including static and kinetic friction coefficients for numerous combinations...
Abstract
This chapter discusses the basic principles of friction and the factors that must be considered when determining its effect on moving bodies in contact. It provides an extensive amount of friction data, including static and kinetic friction coefficients for numerous combinations of engineering materials and coatings. It also describes the causes and effects of the most common forms of wear, the conditions under which they occur, the role of lubrication, and wear testing methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260029
EISBN: 978-1-62708-336-2
... an excellent study using numerical methods to calculate the nonsteady-state temperature distribution in extrusion through conical dies. They included the temperature dependencies of the flow stress and of the thermal constants of the billet and the tool materials into the analysis. The researchers considered...
Abstract
This chapter provides an overview of the thermodynamics of extrusion. It begins by presenting a thermodynamic model of the extrusion process expressed in the form of finite difference equations. It then explains how the model accounts for multiple sources of heat generation, the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540001
EISBN: 978-1-62708-309-6
... on to analyze the stress state of load-bearing members, pressurized tubes, and pin-loaded lugs, accounting for the effect of geometric discontinuities, such as cutouts, fillets, and holes, as well as cracks. It also explains how finite element methods are used to solve problems involving complex geometric...
Abstract
This chapter reviews the fundamentals of stress, strain, and deformation and demonstrates some of the tools and techniques used to analyze how materials and structures respond to tension, compression, bending, and shear. It begins with an overview of the behavior of perfectly elastic and plastic materials and viscous substances. It then describes the stress-strain response of two- and three-dimensional solids, explaining how to determine principle stresses and strains using Mohr’s circle and how to derive equivalent stress and strain using the von Mises relationship. It then goes on to analyze the stress state of load-bearing members, pressurized tubes, and pin-loaded lugs, accounting for the effect of geometric discontinuities, such as cutouts, fillets, and holes, as well as cracks. It also explains how finite element methods are used to solve problems involving complex geometric and loading conditions.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 August 2023
DOI: 10.31399/asm.tb.mdsbktmse.t56070001
EISBN: 978-1-62708-451-2
... simulation simulation setup Molecular dynamics (MD) simulation is a numerical method to solve classical equations of motion for a group of atoms. Its main objective is to determine macroscopic properties of a material system through molecular-level computations. Molecular dynamics simulations can also...
Abstract
This chapter familiarizes readers with the basic theory of molecular dynamics and its application in the study of materials. It explains how material properties and behaviors are determined through the iterative calculation of motion equations for a collection of atoms under a given set of conditions. It also provides a walk-through on the use of LAMMPS, an open-source molecular dynamics simulator, discussing the selections and inputs of relevance to practical materials problems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... forging loads and stresses with acceptable engineering accuracy. Numerical methods: The finite-element method (FEM) is the most widely used method in this field. The major advantage of this method is its ability to generalize its applicability to various problems with little restriction on workpiece...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400277
EISBN: 978-1-62708-479-6
... Abstract This chapter discusses the advantages and limitations of 3D printing technology for the production of batteries and supercapacitors. It explains how 3D printing methods facilitate the build of microdevices with hierarchical nanoarchitectures and controlled microstructure. It also...
Abstract
This chapter discusses the advantages and limitations of 3D printing technology for the production of batteries and supercapacitors. It explains how 3D printing methods facilitate the build of microdevices with hierarchical nanoarchitectures and controlled microstructure. It also reviews recent progress in fabricating electrodes and electrolytes using 3D-printed functional materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
... sections greatly expands the resolution and contrast available from numerous methods of optical microscopy. No chemical etchants are needed to bring out the contrast or phase boundaries with these methods. The images presented are representative of the materials examined. The microscopist must invest...
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060407
EISBN: 978-1-62708-261-7
... (radiused) edges, instead of sharp edges, to reduce stresses and protect against premature wear and corrosion. Numerical modeling can be used to determine if localized areas such as radiused corners are subject to stress levels that are beyond the intended design limits. One popular method that is used...
Abstract
This chapter addresses some of the challenges involved in materials selection, providing context for much of the information presented in the book. It describes a typical four-step design scenario, noting material-related considerations and information needs. It explains how design decisions are complicated by the interconnected nature of material properties, design geometry, and manufacturing requirements and effects. The chapter also assesses the design impact of several materials and discusses codes, standards, and specifications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870101
EISBN: 978-1-62708-314-0
... the cured laminate. If not handled correctly, both of these conditions can cause problems ranging from incorrect part size to cracked and damaged laminates. Thermal expansion is normally handled by shrinking the tool at room temperature using the calculation method shown in Fig. 4.4 . For example...
Abstract
This chapter discusses the tooling used for autoclave curing, one of the most common composite fabrication processes. The discussion covers curing practices, material selection factors, and design challenges associated with thermal expansion, tool shrinkage, part complexity, and heating and cooling rates. The chapter also includes best practices and recommendations for toolmaking and assembly.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460067
EISBN: 978-1-62708-285-3
... Methods The majority of modeling techniques used for the analysis of particle impact in cold spraying have been based on continuum mechanics and, in particular, have involved mesh-based methods of numerical simulation. The focus has been on finite-element simulation of particle impact in two...
Abstract
The modeling and simulation activities in the field of high-pressure cold spray can be divided into two main parts: solid mechanics and fluid dynamics. This chapter focuses on these parts of modeling work in cold spray research. The discussion covers the objective, principal concepts, methods, and outcome of modeling and simulation of particle impact and of in-flight history of particles in cold spraying. The concept of integration of particle impact and fluid flow modeling to optimize cold spray deposition for a given material is also explained.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220143
EISBN: 978-1-62708-341-6
... Abstract This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional...
Abstract
This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional controllers and heat-regulating devices. Integration of control functions is illustrated with examples related to heating of steel slabs, surface hardening of steel parts, vacuum induction melting for casting operations, and process optimization for electric-demand control. Distributed control within larger manufacturing systems is discussed. The chapter also covers nondestructive techniques for process control and methods for process simulation.
1