Skip Nav Destination
Close Modal
Search Results for
notch sensitivity
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 297 Search Results for
notch sensitivity
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2012
Image
Published: 01 June 2008
Image
Published: 01 August 2005
Image
Published: 01 March 2006
Fig. 8.5 Notch-sensitivity curves for use with theoretical factors K t , figure from Ref 8.6 , results and analysis from Ref 8.9
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230209
EISBN: 978-1-62708-298-3
... Abstract This chapter describes the effect of processing variables on the mechanical properties of beryllium, including tensile and yield strength, fracture toughness, creep and fatigue strength, ductile-to-brittle transition, and notch sensitivity. It also discusses the effects of chemical...
Abstract
This chapter describes the effect of processing variables on the mechanical properties of beryllium, including tensile and yield strength, fracture toughness, creep and fatigue strength, ductile-to-brittle transition, and notch sensitivity. It also discusses the effects of chemical composition, impurities, and grain size and the use of hydrostatic testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870179
EISBN: 978-1-62708-344-7
... Parameters in Neuber’s equation (ω = 0 for holes and for notches with parallel sides). Source: Ref 8.6 Fig. 8.4 Neuber constants for steel and aluminum, figure from Ref 8.6 , results from Ref 8.7 Fig. 8.5 Notch-sensitivity curves for use with theoretical factors K t , figure from...
Abstract
This chapter describes how notches affect the load-carrying capacity and fatigue life of materials under cyclic loads. It explains that stresses and strains can be three to four times higher in the vicinity of a notch, greatly accelerating fatigue damage. It discusses the use of stress concentration factors and how they are determined for the general case and for specific geometries, materials, and surface conditions. The chapter covers both elastic and plastic fatigue behaviors as well as a wide range of methods. It also explains how small nuances in loading can introduce tensile or compressive stress in the hysteresis loops causing variations in fatigue life as large as 50:1 depending on where the transition in fatigue behavior occurs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
... at a specified number of cycles. Values of the fatigue notch factor vary with the severity of the notch, the type of notch, the material, the type of loading, and the applied stress level. Notched fatigue data are also reported using a notch sensitivity factor, q : (Eq 14.24) q = K f − 1 K...
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
... of a triaxial stress field caused by a notch is called notch sensitivity. A common way of evaluating notch sensitivity is a tension test using a notched specimen. The notched tensile test has been used extensively for investigating the properties of high-strength steels, for studying hydrogen embrittlement...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
.... Most brittle metals are sensitive to stress-concentration effects under both static and dynamic loading. Notched Tensile Test Ductility measurements on standard smooth tensile specimens do not always reveal metallurgical or environmental changes that can lead to reduced local ductility...
Abstract
This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors. It explains how engineering and true stress-strain curves differ, how one is used for design and the other for analyzing metal forming operations. It discusses the effect of holes, fillets, and radii on the distribution of stresses and the use of notch tensile testing to detect metallurgical embrittlement. The chapter also covers compression, shear, and torsion testing, the prediction of yielding, residual stress, and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060013
EISBN: 978-1-62708-355-3
... (such as occur at a notch) is called notch sensitivity. A common way of evaluating notch sensitivity is a tensile test using a notched specimen. The notch tensile test has been used extensively for investigating the properties of high-strength steels, for studying hydrogen embrittlement in steels...
Abstract
This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion of properties determined from the stress-strain curve of a metal, namely, tensile strength, yield strength, measures of ductility, modulus of elasticity, and resilience. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. The chapter reviews the effect of strain rate and temperature on the stress-strain curve and describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200233
EISBN: 978-1-62708-354-6
... decreases. In Table (18.2) the effect of a notch on the endurance limit of several cast steels having tensile strength from 83.5 ksi to 168.2 ksi (576 MPa to 1160 MPa) is shown. Also shown are the unnotched and notched endurance ratios and the fatigue notch sensitivities of these steels. Fatigue Notch...
Abstract
The design stresses for most pressure-containing structural application, which are based upon minimum mechanical properties designated in the specifications published by the American Society for Testing and Materials (ASTM). This chapter reviews metallurgical characteristics and their influence on the properties and performance of structural carbon and low alloy steels and contains a summary of the relevant features of the ASTM product specifications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200274
EISBN: 978-1-62708-354-6
..., evidence suggests that austenitic materials are less notch sensitive than martensitic or ferritic materials. R. R. Moore fatigue data obtained in SFSA sponsored research on centrifugally cast CF-8M shown in Table 20-3 indicate endurance limits reasonably close to the yield strength values. The data...
Abstract
This chapter describes the definitions, designation, chemical composition, room-temperature properties, elevated-temperature properties, and corrosion resistance of cast high alloy steels and stainless steels. In addition, the corrosion resistance of cast corrosion-resistant alloys is also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610147
EISBN: 978-1-62708-303-4
...-life diagram is constructed using actual test data originally presented as a family of S - N curves, as shown in the conversion procedure illustrated in Fig. 6 . Figure 7 shows constant fatigue-life diagrams from 10 4 to 10 7 cycles for smooth specimens (solid lines) and for notched specimens...
Abstract
This chapter discusses the factors that play a role in fatigue failures and how they affect the service life of metals and structures. It describes the stresses associated with high-cycle and low-cycle fatigue and how they differ from the loading profiles typically used to generate fatigue data. It compares the Gerber, Goodman, and Soderberg methods for predicting the effect of mean stress from bending data, describes the statistical nature of fatigue measurements, and explains how plastic strain causes cyclic hardening and softening. It discusses the work of Wohler, Basquin, and others and how it led to the development of a strain-based approach to fatigue and the use of fatigue strength and ductility coefficients. It reviews the three stages of fatigue, beginning with crack initiation followed by crack growth and final fracture. It explains how fracture mechanics can be applied to crack propagation and how stress concentrations affect fatigue life. It also discusses fatigue life improvement methods and design approaches.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
.... For low-ductility metals, the notch-induced reduction in ductility may be so severe that failure takes place before the 0.2% offset yield strength is reached. The sensitivity of metals and alloys to notch effects is termed the “notch sensitivity.” This sensitivity is quantified through the ratio...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... adjacent to cutout boundaries that substantially reduce load-carrying capacity. Stress concentrations are a function of laminate anisotropy and cutout geometry. Sharp notches produce higher stress concentration factors than circular cutouts. However, the notch sensitivity of laminates is significantly...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240221
EISBN: 978-1-62708-251-8
... that are less ductile or have a high notch sensitivity. Fig. 13.10 Charpy impact specimen configurations Applications of the notched bar impact test include comparisons of batch variations in steels, evaluation of material behavior during either intentional or accidental high rates of loading...
Abstract
Fracture is the separation of a solid body into two or more pieces under the action of stress. Fracture can be classified into two broad categories: ductile fracture and brittle fracture. Beginning with a comparison of these two categories, this chapter discusses the nature and causes of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions to a brittle failure. The discussion then covers the Griffith theory of brittle fracture and the formulation of fracture mechanics. Procedures for determination of the plane-strain fracture toughness are subsequently covered. Finally, the chapter describes the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480113
EISBN: 978-1-62708-318-8
... strength; TYS, tensile yield strength In addition to the effect of the combination of static and dynamic stress conditions, fatigue strength is also affected by and related to four factors: Tensile strength Surface condition (finish and stress condition) Notches and notch sensitivity...
Abstract
This chapter discusses the factors that govern the mechanical properties of titanium, beginning with the morphology of the alpha phase. It explains that the shape of the alpha phase has a significant effect on many properties, including hardness, tensile strength, toughness, and ductility as well as creep, fatigue strength, and fatigue crack growth rate. It also discusses the influence of other titanium phases and the properties of titanium-based intermetallic compounds, metal-matrix composites, and shape-memory alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780204
EISBN: 978-1-62708-281-5
.... By reversing the specimen in the vise, a comparison can be made between the notched and unnotched strengths. By machining notches of different radii, notch sensitivity can be determined. A plot of impact strength as a function of the radius of the tip of the notch for different plastics is given in Fig. 11...
Abstract
This article discusses various factors influencing general polymeric behavior, ductile-brittle transitions, crazing, and the brittle fracture of polymeric materials. The discussion covers the effects of environment on glassy thermoplastic, several parametric descriptions of craze initiation, the kinetics of craze growth, and the effect of crazing on toughness of the plastic. In addition, the article provides information on various tests to determine stress-to-craze value, strain-to-craze value, and fracture toughness of the plastic.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630013
EISBN: 978-1-62708-270-9
... these materials are more sensitive to stress concentrations, or notches, and may fracture prematurely when stressed in tension. Fig. 8 Relationship between hardness and tensile strength of metals in the absence of stress concentrations The harder and stronger the metal, the more sensitive...
Abstract
This chapter focuses on some of the facts of mechanical properties of metals that must be understood to successfully undertake the task of failure analysis. The discussion begins by describing the causes and effects of elastic and plastic deformation followed by a section describing the effects of temperature variations on mechanical properties, both in tension and in compression. The nonlinear behavior of gray cast iron caused by the graphite flakes is then described. Finally, the effect of stress concentrations on high-strength metals is considered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860371
EISBN: 978-1-62708-348-5
... of aluminum alloys at –452° F in liquid helium . In Advances in Cryogenic Engineering , Vol. 13 , Plenum Press , New York , 294 – 308 . 10.1007/978-1-4757-0516-4_33 Kaufman J. G. and Johnson E. W. ( 1963 ). Notch sensitivity of aluminum alloy sheet and plate at –320° F based upon...
Abstract
This chapter discusses the structural alloys being used for cryogenic applications in commercially significant quantities. It emphasizes the practical considerations involved in the material selection process and provides the information necessary to make preliminary selections of alloys most suitable for the intended cryogenic application. The chapter provides general information on a class or group of alloys, their representative mechanical and physical properties, and their fabrication characteristics. The materials covered are austenitic stainless steels, nickel steels, aluminum alloys, and other metals and alloys.
1