Skip Nav Destination
Close Modal
Search Results for
nonuniform stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 270 Search Results for
nonuniform stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 July 2009
Fig. 24.2 Illustration of a nonuniform stress pattern introduced by a tensile load applied in shear to a plain lap joint. Source: Sharpe 1990
More
Image
Published: 01 November 2010
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130255
EISBN: 978-1-62708-284-6
... , there will be a stretching or elongation in areas where the cooling is slow, which will act as a push stress, leading to push cracking ( Ref 33 , 34 ). Another form of cracking is pull cracking, which occurs with nonuniform surface cooling between the austenitizing temperature and M s . Push cracking and pull cracking...
Abstract
This chapter provides an overview of the fundamental material- and process-related parameters of quenching on residual stress, distortion control, and cracking. It begins with a description of phase transformations during heating and quenching of steel. This is followed by a section on the effects of materials and quench process design on distortion of steel during heat treating. Details on stress raisers and their role in quench cracking are then presented. The chapter ends with various selected case histories of failures attributed to the quenching process.
Image
Published: 30 November 2013
Fig. 27 Reversed bending fatigue of an alloy-steel steering knuckle at a hardness level of 30 HRC with nonuniform application of stresses. The multiple-origin fatigue at the bottom was caused by the tendency of normal wheel loading to bend the spindle (lower right) of the knuckle upward
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380191
EISBN: 978-1-62708-456-7
... stresses Subsurface tensile stresses Plating for decarburization control Changes in surface condition May contribute to nonuniform heating due to changes in emissivity Heat treatment factors Furnace temperature Increases in furnace/part temperature increase distortion...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430351
EISBN: 978-1-62708-253-2
.... There was excessive and nonuniform weld penetration on the inner surface. There were deep sharp undercuts on either side along the entire fusion line, which acted as stress concentration points. The situation was further exacerbated by disturbances in the water chemistry coupled with fluctuating stresses on account...
Abstract
Boiler tube failures associated with material defects are often the result of poor quality control, whether in primary production, on-site fabrication, storage and handling, or installation. This chapter examines quality-related failures stemming from compositional and structural defects, forming and welding defects, design defects, improper cleaning methods, and ineffective maintenance. It also includes case studies and illustrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410487
EISBN: 978-1-62708-265-5
... and cementite Source: Ref 20.1 Shape distortion is caused by nonuniform thermal and transformation stresses due to temperature variations throughout parts of complicated shape or parts with large differences in section size within the part. Localized regions, which expand or contract due to more rapid...
Abstract
Temperature and deformation gradients developed in the course of manufacturing can have undesired effects on the microstructures along their path; the two most common being residual stress and distortion. This chapter discusses these manufacturing-related problems and how they can be minimized by heat treatments. It also provides information on residual stress evaluation and prediction techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900031
EISBN: 978-1-62708-350-8
...—a condition commonly achieved by vapor degreasing the surface after hardening and tempering and prior to nitriding. Surface contaminants, which can cause formation of a nonuniform, or “spotty,” case, include: Cutting fluids Oils for surface protection Fingerprints Paint Decarburization...
Abstract
Formation of the nitrided case begins through a series of nucleated growth areas on the steel surface. These nucleating growth areas will eventually become what is known as the compound layer or, more commonly, the white layer. This chapter discusses the influence of carbon on the compound zone. It explains how to control and calculate compound zone thickness. Compound zone thickness can be controlled by dilution, the two-stage Floe process, or by ion nitriding. The chapter describes the factors affecting surface case formation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050175
EISBN: 978-1-62708-311-9
... and identification of seams is before induction hardening. Stress and Quench Cracks Stress Cracks Stress cracks can be produced in cold-drawn bars that crack during heating up to austenitizing temperature. High nonuniform residual stresses, as discussed in Chapter 5, “Heat Treating Basics,” in this book...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900325
EISBN: 978-1-62708-358-4
... processed tool steels, do not initiate ductile fracture. However, such factors as overloads, stress concentrations, surface flaws, or nonuniform distributions of coarse carbides may significantly lower the resistance of a tool steel to ductile fracture. Ductile fractures of tool steels tend...
Abstract
This chapter presents an overview of some of the major causes of tool and die failures. The chapter describes fracture and fracture toughness of tool steels, and the influence of factors such as steel quality and primary processing, mechanical design, heat treatment, grinding and finishing, and distortion and dimensional change.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610585
EISBN: 978-1-62708-303-4
... the austenitizing temperature to room temperature, a residual-stress pattern is established due to a combination of thermal gradients and any local transformation-induced volume expansion. Thermal contraction develops nonuniform thermal (or quenching) stresses due to different rates of cooling experienced...
Abstract
This appendix provides detailed information on design deficiencies, material and manufacturing defects, and service-life anomalies. It covers ingot-related defects, forging and sheet forming imperfections, casting defects, heat treating defects, and weld discontinuities. It shows how application life is affected by the severity of service conditions and discusses the consequences of using inappropriate materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130177
EISBN: 978-1-62708-284-6
... or soot contamination in oil or aqueous media, also may lead to distortion and cracking. Finally, excessive foaming and air entrainment of the quench media will lead to nonuniform cooling, soft spots, increased residual stresses, and cracking. Therefore, it is essential that the quench bath be well...
Abstract
This chapter provides information on various contributors to failure of carburized and carbonitrided components, with the primary focus on carburized components. The most common contributors covered include component design, selection of proper hardenability, increased residual stress, dimensional stability, and generation of quenching and grinding cracks. They also include insufficient case hardness and improper core hardness, influence of surface carbon content and grain size, internal oxidation, structure of carbides, and inclusion of noncarbide. Details on micropitting, macropitting, case crushing, pitting corrosion, and partial melting are also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.9781627083553
EISBN: 978-1-62708-355-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230441
EISBN: 978-1-62708-298-3
... 2003 Most adhesive joints are lap joints in which a nonuniform stress pattern can be induced by a tensile load applied in shear, as illustrated in Fig. 24.2 [ Sharpe 1990 ]. Examples of various lap joints are shown in Fig. 24.3 [ Snogren 1970 ]. Some of the joints that are illustrated...
Abstract
This chapter explains how to join beryllium parts using adhesive bonding and mechanical fastening techniques and discusses the advantages and disadvantages of each method. It describes the stresses that need to be considered when designing adhesive bonds, the benefits and limitations of different adhesives, and surface preparation requirements. It explains how adhesives are applied and cured and how curing times and temperatures affect bonding strength. It also discusses the use of bolts and rivets and the different types of joints that can be made with them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870449
EISBN: 978-1-62708-314-0
... of the overlap in the manner shown in Fig. 17.23 . This nonuniform load transfer results from the compatibility of deformations associated with the variation of direct stress within the adherends from one end of the bonded joint to the other. Fig. 17.22 Typical single-lap shear test specimen Fig...
Abstract
This chapter discusses the use of mechanical fastening and adhesive bonding, the primary methods for joining polymer matrix composites. It describes and analyzes the basic types of mechanically fastened joints, including single-hole and multirow bolted composite joints. It then reviews the advantages and disadvantages of adhesively bonded joints and compares and contrasts the long-term performance of various joint designs. The chapter also discusses the merits of stepped-lap and bonded-bolted joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060265
EISBN: 978-1-62708-355-3
... the plastic ow becomes nonuniform and necking begins. plasticity. The property that enables a material to undergo permanent deformation without rupture. plastic strain. Dimensional change that does not disappear when the initiating stress is removed. Usually accompanied by some elastic deformation. plastic...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
... known as plane strain, in which triaxial tensile stresses exist. The plane-strain condition often results from the nonuniform stress distribution near stress raisers, such as cracks and other defects. Because of elastic constraints, lateral deformations near the crack tip or other stress concentrations...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630035
EISBN: 978-1-62708-270-9
.... The result is that the interior of the glass pane is under tension while the outside is left with a significant compressive residual stress. Transformational Residual Stresses Induced residual stresses caused primarily by nonuniform expansion due to phase transformations occurring within a material...
Abstract
Residual, or locked-in internal, stresses are regions of misfit within a metal part or assembly that can cause distortion and fracture just as can the more obvious applied, or service, stresses. This chapter describes the fundamental facts about residual stresses and discusses the basic mechanisms of residual stress formation: thermal, transformational, mechanical, and chemical.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320049
EISBN: 978-1-62708-332-4
... is stretched in one direction (uniaxially), it yields when the local stress exceeds the material’s yield stress. However, the stresses in a component are multiaxial and more complex. The nonuniform stress distribution can result in local yielding at some locations, even under lower loads, while other areas...
Abstract
This chapter provides an overview of how the disciplines of design, material, and manufacturing contribute to engineering for functional performance. It describes the interaction of product designers and casting engineers in product development. It discusses the consequences of component failure, uncertainty in data and assumptions, and selection of the factor of safety. The chapter also presents an overview of the functional requirements for product performance and provides an overview of product design development. It also presents a partial list of the different tests that are performed on prototypes and examples of product testing. The chapter describes the requirements of a traceability system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
... with a microstructural change (phase transformation). When a steel part is quenched from the austenitizing temperature to room temperature, a residual-stress pattern is established due to a combination of a thermal gradient and a local transformation-induced volume expansion. Thermal contraction develops nonuniform...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
1