Skip Nav Destination
Close Modal
Search Results for
nonaustenitic steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6 Search Results for
nonaustenitic steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130529
EISBN: 978-1-62708-284-6
... Abstract This appendix is a collection of tables listing examples of published hardness conversion equations, approximate Rockwell B and C hardness conversion numbers for nonaustenitic steels, and equivalent hardness numbers for Brinell hardness numbers and Vickers (diamond pyramid) hardness...
Abstract
This appendix is a collection of tables listing examples of published hardness conversion equations, approximate Rockwell B and C hardness conversion numbers for nonaustenitic steels, and equivalent hardness numbers for Brinell hardness numbers and Vickers (diamond pyramid) hardness numbers for steel.
Image
Published: 01 June 1983
Figure 8.11 Temperature dependence of fracture toughness for various nonaustenitic steels, showing the beneficial effects of increased nickel content on transition temperature and subtransition range toughness.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
... temperature (right), the fracture is virtually complete cleavage. Note the increased deformation with increased temperatures. Note that the preceding discussion of the ductile/brittle transition primarily concerns carbon and alloy steels, as well as certain nonaustenitic stainless steels. Other metals...
Abstract
A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously in order to cause brittle fracture in a normally ductile steel. The chapter then discusses the macroscale characteristics and microstructural aspects of brittle fracture. A summary of the types of embrittlement experienced by ferrous alloys is presented. The chapter concludes with a brief section providing information on mixed fracture morphology.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860269
EISBN: 978-1-62708-348-5
...-treatment combination include increasing grain sizes, thicker sections, and higher loading rates. Nickel alloying decreases the transition temperatures of ferritic steels, as shown in Fig. 8.11 . Figure 8.11 Temperature dependence of fracture toughness for various nonaustenitic steels, showing...
Abstract
This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610055
EISBN: 978-1-62708-303-4
... The preceding discussion of the ductile/brittle transition primarily concerns carbon and alloy steels as well as certain nonaustenitic stainless steels. Other metals with body-centered cubic crystal structures behave similarly but are less common. Most nonferrous metals, such as alloys of aluminum and copper...
Abstract
This chapter discusses the causes and effects of ductile and brittle fracture and their key differences. It describes the characteristics of ductile fracture, explaining how microvoids develop and coalesce into larger cavities that are rapidly pulled apart, leaving bowl-shaped voids or dimples on each side of the fracture surface. It includes SEM images showing how the cavities form, how they progress to final failure, and how dimples vary in shape based on loading conditions. The chapter, likewise, describes the characteristics of brittle fracture, explaining why it occurs and how it appears under various levels of magnification. It also discusses the ductile-to-brittle transition observed in steel, the characteristics of intergranular fracture, and the causes of embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5