1-20 of 781 Search Results for

nitridation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080067
EISBN: 978-1-62708-304-1
... Abstract Oxidation usually dominates high-temperature corrosion reactions, but under certain conditions, some alloys may be affected by nitridation as well. This chapter explains why nitridation occurs and how it attacks various metals, in some cases, penetrating deeper than oxidation...
Image
Published: 01 November 2007
Fig. 4.21 Schematic showing a model for internal nitridation attack in high-temperature alloys in a simulated combustion environment. Source: Ref 36 More
Image
Published: 01 November 2007
Fig. 4.23 Severe nitridation attack and intergranular cracking in alloy 800 (Fe-22Cr-32Ni-Al-Ti) after exposure to the NH 3 -30%H 2 O gas mixture at 500 °C (930 °F) for 200 h. (a) Surface appearance of the tested specimen showing intergranular cracks. (b) Cross section of the tested specimen More
Image
Published: 01 November 2007
Fig. 4.33 Optical micrographs showing a through-thickness nitridation attack for alloy 617, a nickel-base alloy containing about 1.3%Al, after exposure to 100% N 2 at 1090 °C (2000 °F) for 168 h. Note extensive blocky chromium nitrides and needle-shaped aluminum nitrides. Magnification bar More
Image
Published: 01 November 2007
Fig. 4.35 Nitridation kinetic data for alloy 214 (nickel-base alloy containing 4.5% Al) and alloy 230 (nickel-base alloy containing little aluminum) after exposure to 100% N 2 at 1090 °C (2000 °F) for 168 h. Source: Ref 50 More
Image
Published: 01 November 2007
Fig. 4.36 Optical micrographs showing through-thickness nitridation attack for (a) Type 310SS (Fe-25Cr-20Ni) and (b) alloy 150 (Co-27Cr-18Fe) after exposure to 100% N 2 at 1090 °C (2000 °F) for 168 h. Courtesy of Haynes International, Inc. More
Image
Published: 01 November 2007
Fig. 4.38 Nitridation rate constants as a function of the alloy’s nickel concentration when tested in N 2 -5%H 2 at 1000 and 1100 °C (1830 and 2010 °F). Source: Ref 51 More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250227
EISBN: 978-1-62708-345-4
... Abstract Nitriding is a surface hardening heat treatment that introduces nitrogen into the surface of steel while it is in the ferritic condition. Gas nitriding using ammonia as the nitrogen-carrying species is the most commonly employed process and is emphasized in this chapter. Nitriding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900001
EISBN: 978-1-62708-350-8
... Abstract This chapter discusses the metallurgical considerations and process requirements of nitriding. It presents the pioneering work of Adolph Machlet and Adolph Fry and presents early developments. One such development is the Floe process, a two-stage treatment used to reduce the formation...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900013
EISBN: 978-1-62708-350-8
... Abstract The unique advantages of the nitriding process were recognized by German researchers in the early 1920s. It was used to treat steels for applications that required: high torque, high wear resistance; abrasive wear resistance; corrosion resistance; and high surface compressive strength...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900071
EISBN: 978-1-62708-350-8
... Abstract This chapter begins with an overview of the history of ion nitriding. This is followed by sections that describe how the ion nitriding process works, glow discharge characteristics, process parameters requiring good control, and the applications of plasma processing. The chapter...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900125
EISBN: 978-1-62708-350-8
... Abstract This chapter first lists the compositions of typical steels that are suitable for nitriding. It then presents considerations for steel selection. The chapter also shows the influence of alloying elements on hardness after nitriding and the depth of nitriding. It provides a detailed...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900153
EISBN: 978-1-62708-350-8
... Abstract The nitriding process can be applied to various materials and part geometries. This chapter focuses on tool steels, pure irons, low-alloy steels, and maraging steels. Various considerations such as the surface metallurgy requirements of the die, including case depth, compound layer...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320133
EISBN: 978-1-62708-347-8
... Abstract Nitriding is a case-hardening process used for alloy steel gears and is quite similar to case carburizing. Nitriding of gears can be done in either a gas or liquid medium containing nitrogen. This chapter discusses the processes involved in gas nitriding. It reviews the effects...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900053
EISBN: 978-1-62708-350-8
... Abstract This chapter presents the salts used and the process advantages of salt bath nitriding. It describes bath testing and analysis including the materials and equipment, analysis procedure, and determination of sodium carbonate and sodium cyanate for titration testing of the nitriding salt...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900089
EISBN: 978-1-62708-350-8
... Abstract Ion nitriding equipment can be categorized into two groups: cold-wall continuous direct current (dc) equipment and hot-wall pulsed dc equipment. This chapter focuses on these two categories along with other important considerations for ion (plasma) nitriding equipment and processing...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900111
EISBN: 978-1-62708-350-8
... Abstract A fluidized-bed furnace system can be used for the gas nitriding process. This chapter focuses on fluidized-bed nitriding. It discusses the methods of heating a fluidized bed. The heating system can be electrical or gas, and internal or external. The chapter describes nitriding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900167
EISBN: 978-1-62708-350-8
... Abstract Examining and evaluating the nitrided case is generally accomplished by hardness testing and microscopic examination. This chapter discusses both characterization methods, as well as sample preparation. The chapter also discusses the processes involved in the etching of the sample...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320159
EISBN: 978-1-62708-347-8
... Abstract Several limitations in achieving optimal gear performance with conventional nitriding have led researchers to work on a variety of novel and improved nitriding processes. Of these, ion/plasma nitriding offers some promising results, which are reviewed in this chapter. The chapter...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130241
EISBN: 978-1-62708-284-6
... Abstract This chapter discusses the various factors influencing the evaluation of fatigue fracture of nitrided layers. It begins by describing the problems of enhancing the fatigue resistance of machine components. The significance and detailed assessment of the effect of a structural flaw...