Skip Nav Destination
Close Modal
Search Results for
nickel-chromium-molybdenum steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 454 Search Results for
nickel-chromium-molybdenum steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130587
EISBN: 978-1-62708-284-6
... Abstract This appendix is a collection of isothermal diagrams for carbon steels, chromium-molybdenum steels, nickel-chromium-molybdenum steels, nickel-molybdenum steels, and chromium steels. isothermal diagrams carbon steels chromium-molybdenum steels nickel-chromium-molybdenum steels...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
..., free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides...
Abstract
This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels, free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed.
Image
Published: 01 December 1995
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130601
EISBN: 978-1-62708-284-6
... carbon steels manganese steels silicon steels nickel steels nickel-chromium-molybdenum steels chromium steels Selected continuous cooling transformation diagrams for: Carbon steels with nominal carbon contents of 0.8, 0.44, 0.86, 0.96 wt% C Mn steels (1¾M, 1½Mn) Mn-Mo, Mn-Ce, Mn-Ni...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240371
EISBN: 978-1-62708-251-8
... Abstract Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties...
Abstract
Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties compared to plain carbonsteels as a result of alloying additions. This chapter describes the beneficial effects of these alloying elements in steels. It discusses the mechanical properties, nominal compositions, advantages, and engineering applications of various classes of alloy steels. They are low-alloy structural steels, SAE/AISI alloy steels, high-fracture-toughness steels, maraging steels, austenitic manganese steels, high-strength low-alloy steels, dual-phase steels, and transformation-induced plasticity steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200311
EISBN: 978-1-62708-354-6
...-0.65 ... ... ... ... LC2 2½ % Nickel steel 0.25 0.50-0.80 0.60 0.04 0.045 ... 2.00-3.00 ... ... ... ... ... LC2-1 Nickel-chromium-molybdenum steel 0.22 0.55-0.75 0.50 0.04 0.045 1.35-1.85 2.50-3.50 0.30-0.60 ... ... ... ... LC3 3½% Nickel steel 0.15 0.50-0.80...
Abstract
This chapter defines low-temperature and cryogenic steels and describes their alloy classifications and their ambient and low-temperature properties. These steels include ferritic carbon and low alloy steels, martensitic low alloy steels, martensitic high alloy steels, and austenitic high alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
... Ni 5.00 Nickel-chromium steels 31 xx Ni 1.25; Cr 0.65 and 0.80 32 xx Ni 1.75; Cr 1.07 33 xx Ni 3.50; Cr 1.50 and 1.57 34 xx Ni 3.00; Cr 0.77 Molybdenum steels 41 xx Cr 0.50, 0.80, and 0.95; Mo 0.12, 0.20, 0.25, and 0.30 Nickel-chromium-molybdenum steels 43...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
... the austenitic and duplex grades further with chromium, molybdenum, and nitrogen, and the ferritic grades with chromium and molybdenum. The beneficial effects of these alloying elements are complex and interactive. Attempts have been made by suppliers of stainless steels and nickel-base alloys to develop...
Abstract
Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This chapter examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on the corrosion resistance of these alloys. Some categories of corrosion covered are pitting, crevice, intergranular, stress-corrosion cracking, general, and high-temperature corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170257
EISBN: 978-1-62708-297-6
... an adequately resistant grade for particular applications. Austenitic Stainless Steels As in pitting resistance, the major alloying elements, nickel and chromium, increase resistance to crevice corrosion. Other important elements that increase resistance to crevice corrosion are molybdenum, nitrogen...
Abstract
This article covers the metallurgy and properties of stainless steels. It provides composition information on all types of ferritic, austenitic, martensitic, duplex, and precipitation-hardening stainless steels, including proprietary and nonstandard grades, along with corresponding property and performance data. It also discusses the effect of various alloying elements on pitting, crevice corrosion, sensitization, stress-corrosion cracking, and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200295
EISBN: 978-1-62708-354-6
... httpsdoi.org/10.31399/asm.tb.sch6.t68200295 Introduction Alloy Compositions Nickel-Chromium-Molybdenum Nickel-Copper Nickel-Molybdenum Individual Alloys Heat Treatment Mechanical Properties Welding Applications Copyright © 1995 Steel Founders' Society of America and ASM International® All rights reserved. www...
Abstract
Nickel-base castings are produced from a group of alloys with compositions that are typically greater than 50% Ni and less than 10% iron. This chapter presents the casting compositions of nickel-base alloys. It then provides an overview of heat treatment, mechanical properties, and applications of nickel-base castings.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
...%. The primary function of chromium is to provide passivity in oxidizing acid solutions; this is also its main function in the stainless steels. Molybdenum greatly enhances the resistance of nickel to reducing acids, in particular hydrochloric, and increases the resistance to localized attack (pitting...
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170242
EISBN: 978-1-62708-297-6
... austenitic manganese steel have been proposed, often in unexploited patents, but only a few have been adopted as significant improvements. These usually involve variations of carbon and manganese, with or without additional alloys such as chromium, nickel, molybdenum, vanadium, titanium, and bismuth...
Abstract
This article provides an overview of austenitic manganese steels. It describes the standard composition ranges of commercial products and explains how various alloying elements affect mechanical properties, processing, and performance. The article also discusses special grades of manganese steels and the types of applications for which they have been developed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440125
EISBN: 978-1-62708-262-4
...% A steel is also classified as an alloy steel when a difinite range or a definite minimum quantity of any of the following elements is specified or required within recognized limits: Aluminum Boron Chromium (up to 3.99%) Cobalt Molybdenum Nickel Niobium Titanium Tungsten...
Abstract
This chapter discusses the fundamentals of heat treating of alloy steels. It begins with an overview of the designations of AISI-SAE grades of alloy steels, followed by a description of the purposes served by alloying elements. The effects of specific alloying elements on the heat treatment of alloy steels and of boron on hardenability of alloy steels are then discussed. Procedures for heat treating four specific alloy steels (4037, 4037H; 4140, 4140H; 4340, 4340; and E52100) are subsequently presented. The chapter concludes with a brief account of austempering and martempering treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel...
Abstract
Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel alloys include electrical-resistance alloys, low-expansion alloys, magnetically soft alloys, and shape memory alloys. This chapter discusses the metallurgy, nominal composition, properties, applications, advantages, and disadvantages of these alloys. It also provides information on cobalt wear-resistant alloys and cobalt corrosion-resistant alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... simultaneously. Stainless steel is an exceptional alloy system in that it is not a dilute solution. Alloy steels may contain several percent of alloying elements, such as carbon, manganese, nickel, molybdenum, chromium, and silicon, in addition to the impurities sulfur, oxygen, and phosphorus. Alloy steels...
Abstract
Metallurgy, as discussed in this chapter, focuses on phases normally encountered in stainless steels and their characteristics. This chapter describes the thermodynamics and the three basic phases of stainless steels: ferrite, austenite, and martensite. Formation of the principal intermetallic phases is also covered. In addition, the chapter provides information on carbides, nitrides, precipitation hardening, and inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170123
EISBN: 978-1-62708-297-6
..., 0.25, and 0.30 Nickel-chromium-molybdenum steels 43 xx Ni 1.82; Cr 0.50 and 0.80; Mo 0.25 43BV xx Ni 1.82; Cr 0.50; Mo 0.12 and 0.25; V 0.03 min 47 xx Ni 1.05; Cr 0.45; Mo 0.20 and 0.35 81 xx Ni 0.30; Cr 0.40; Mo 0.12 86 xx Ni 0.55; Cr 0.50; Mo 0.20 87 xx Ni 0.55; Cr...
Abstract
This article discusses the role of alloying in the production and use of carbon and low-alloy steels. It explains how steels are defined and selected based on alloy content and provides composition and property data for a wide range of designations and grades. It describes the effect of alloying on structure and composition and explains how alloy content can be controlled to optimize properties and behaviors such as ductility, strength, toughness, fatigue and fracture resistance, and resistance to corrosion, wear, and high-temperature creep. It also examines the effect of alloying on processing characteristics such as hardenability, formability, weldability, machinability, and temper embrittlement. In addition, the article provides an extensive amount of engineering data with relevance in materials selection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060175
EISBN: 978-1-62708-261-7
... of selected alloying elements such as manganese, silicon, chromium, nickel, sulfur, molybdenum, vanadium, niobium, and tungsten as well as other alloy/impurity elements that impart specific properties. The many varieties of steels cover a wide range of applications and product forms. Examples of steels...
Abstract
This chapter describes the classification of steels and the various compositional categories of commercial steel products. It explains how different alloying elements affect the properties of carbon and low-alloys steels and discusses strength, toughness, and corrosion resistance and how to improve them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... silicon-molybdenum cast iron 10–12 5.6–6.5 Iron carbon alloys 9.3–12 5.2–6.9 Pure Terbium (Tb) 9.8–13 5.4–6.9 Cobalt chromium nickel tungsten 10–12 5.8–6.7 High-carbon high-chromium cold work tool steel 11 6.2 Tungsten high-speed tool steel 8.5–14 4.7–7.8 Commercially pure...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310069
EISBN: 978-1-62708-286-0
... used when high strength or high formability is the main objective; (2) chromium nickel alloys used for high temperature oxidation resistance; and (3) chromium, molybdenum, nickel, and nitrogen alloys used for applications where corrosion resistance is the main objective. austenitic stainless...
Abstract
This chapter discusses the compositions, mechanical properties, phase structure, stabilization, corrosion resistance, and advantages of austenitic stainless steels. Austenitic alloys are classified and reviewed in three groups: (1) lean alloys, such as 201 and 301, which are generally used when high strength or high formability is the main objective; (2) chromium nickel alloys used for high temperature oxidation resistance; and (3) chromium, molybdenum, nickel, and nitrogen alloys used for applications where corrosion resistance is the main objective.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... The nickel alloy family consists of: Commercially pure nickels Low-alloy nickels Nickel-copper alloys Nickel-molybdenum alloys Nickel-chromium-iron alloys Iron-nickel-chromium alloys Nickel-chromium-molybdenum alloys Nickel-chromium-iron-molybdenum alloys Nickel-chromium-tungsten...
Abstract
This article examines the role of alloying in the production and use of nickel and its alloys. It explains how nickel-base alloys are categorized and lists the most common grades along with their compositional ranges and corresponding UNS numbers. It describes the role of nearly 20 alloying elements and how they influence strength, ductility, hardness, and corrosion resistance. It also addresses processing issues, explaining how alloying and intermetallic phases affect forming, welding, and machining operations.
1