1-20 of 351 Search Results for

nickel-chromium-iron-molybdenum-copper alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170107
EISBN: 978-1-62708-297-6
... between resistance to abrasion and the toughness needed to withstand repeated impact. All high-alloy white irons contain chromium to prevent formation of graphite on solidification and to ensure the stability of the carbide phase. Most also contain nickel, molybdenum, copper, or combinations...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... The nickel alloy family consists of: Commercially pure nickels Low-alloy nickels Nickel-copper alloys Nickel-molybdenum alloys Nickel-chromium-iron alloys Iron-nickel-chromium alloys Nickel-chromium-molybdenum alloys Nickel-chromium-iron-molybdenum alloys Nickel-chromium-tungsten...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... 0.090–0.105 Nickel molybdenum alloys 389–420 0.093–0.100 Cast high copper alloys 335–481 0.080–0.115 Nickel molybdenum alloy steel 376–440 0.090–0.105 Cast bronze 352–473 0.084–0.113 Cobalt alloys 285–545 0.068–0.130 Nickel with chromium and/or iron, molybdenum 335–502...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200295
EISBN: 978-1-62708-354-6
... and are similar to Hastelloy C-4. CX2MW is the most recent alloy addition to this group and is patterned after Hastelloy C-22. This alloy has more chromium than CW12MW but less molybdenum and tungsten. Nickel-Copper The nickel-copper alloys in ASTM-A494 are the Mxxx grades because of their similarity...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170021
EISBN: 978-1-62708-297-6
... iron alloying are chromium, copper, nickel, molybdenum, vanadium, and tin. Table 3 summarizes the effects of various alloying elements on the properties of gray iron. Figure 5 shows the effects of minor alloying additions on hardness and strength. Effects of alloying elements on the mechanical...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
... Abstract Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
...), is used as a corrosion-resistant material in food processing and in high-temperature caustic and gaseous chlorine or chloride environments. However, alloying of nickel with other elements (e.g., chromium, copper, or molybdenum) greatly broadens its use in corrosion-resistant applications ( Fig. 2...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940183
EISBN: 978-1-62708-302-7
... of solid solutions or the kinds and distribution of phases in the alloy. The effect of chromium in iron or nickel is to decrease both E pp and i crit and hence to enhance the ease of placing the alloy in the passive state. The addition of chromium to iron is the basis for a large number of alloys broadly...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430027
EISBN: 978-1-62708-253-2
... content is specified or required for chromium, cobalt, columbium [niobium], molybdenum, nickel, titanium, tungsten, vanadium or zirconium, or any other element to be added to obtain a desired alloying effect; when the specified minimum for copper does not exceed 0.40 per cent; or when the maximum content...
Image
Published: 01 January 2000
Fig. 23 Alloys with reported corrosion rates of <0.5 mm/year (<20 mils/year) in HCl Zone Metal 1 ACI CN-7M (a) (b) (c) Monel (b) (c) (d) Copper (b) (c) (d) Nickel 200 (b) (c) (d) Silicon bronze (b) (c) (d) Silicon cast iron (b) (e) Tungsten Titanium, grade More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.9781627082846
EISBN: 978-1-62708-284-6
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... common precipitates found in stainless steel. It is not surprising that stainless steel with iron, chromium, nickel, manganese, silicon, and often molybdenum, titanium, and niobium should have numerous ancillary phases. Intermetallic phases are normally hard and brittle. They can render the bulk alloy...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790235
EISBN: 978-1-62708-356-0
... trade names were not accepted in ASTM specifications, designations were resorted to, such as “Nickel-Chromium-Molybdenum-Iron-Cobalt Alloy” and “Nickel-Cobalt-Chromium-Molybdenum-Titanium-Aluminum.” These names were unsatisfactory to all concerned. There were other problems with metal designations...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170062
EISBN: 978-1-62708-297-6
..., there are no appreciable differences in the corrosion behavior of gray and ductile irons. As described in the article “ Gray Irons ,” the elements that enhance the corrosion resistance of both gray and ductile irons include silicon, nickel, chromium, copper, and molybdenum. In general, low and moderately alloyed ductile...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... key alloy categories: Light metals (aluminum, beryllium, magnesium, and titanium) Corrosion-resistance alloys (cobalt, copper, nickel, titanium, aluminum) Superalloys (nickel, cobalt, iron-nickel) Refractory metals (molybdenum, niobium, rhenium, tantalum, and tungsten) Low-melting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170242
EISBN: 978-1-62708-297-6
... have been adopted as significant improvements. These usually involve variations of carbon and manganese, with or without additional alloys such as chromium, nickel, molybdenum, vanadium, titanium, and bismuth. The most common of these compositions, as listed in ASTM A 128, are given in Table 1...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... and moderately alloyed irons contain the iron and silicon contents of unalloyed cast irons plus up to several percent of nickel, copper, chromium, or molybdenum. As a group, these materials exhibit two to three times the service life of unalloyed cast irons. High-Nickel Austenitic Cast Irons High-nickel...