1-20 of 562 Search Results for

nickel-chromium-iron alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2008
Fig. 14 Influence of nickel on oxidation of iron-chromium alloys. Source: Ref 19 More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel...
Image
Published: 31 December 2020
Fig. 14 Cross sections of iron-chromium-nickel alloy system at 70% iron More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... The nickel alloy family consists of: Commercially pure nickels Low-alloy nickels Nickel-copper alloys Nickel-molybdenum alloys Nickel-chromium-iron alloys Iron-nickel-chromium alloys Nickel-chromium-molybdenum alloys Nickel-chromium-iron-molybdenum alloys Nickel-chromium-tungsten...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200298
EISBN: 978-1-62708-354-6
... are shown in Tables 22-3 and 22-4 . The standard grades, which are recognized by ASTM specifications, fall in a range from 0 to 68% nickel with 8 to 32% chromium and the balance primarily iron plus up to 2.5% silicon and 2% manganese. Proprietary alloys and others, which are now in the public domain...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
... in their thermal conductivity characteristics. The nickel-chromium and nickel-chromium-iron alloys have values lower than those of both the carbon steels and the austenitic stainless steels, whereas nickel and the nickel-copper alloys have values considerably higher than those of the steels. Electrical...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170587
EISBN: 978-1-62708-297-6
... Abstract This article discusses the role of alloying in the production and use of low-expansion alloys such as iron-nickel (Invar), iron-nickel-chromium (Elinvar), and iron-nickel-cobalt (Super-Invar and Kovar). It explains how the coefficient of thermal expansion varies with nickel content...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170107
EISBN: 978-1-62708-297-6
... between resistance to abrasion and the toughness needed to withstand repeated impact. All high-alloy white irons contain chromium to prevent formation of graphite on solidification and to ensure the stability of the carbide phase. Most also contain nickel, molybdenum, copper, or combinations...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790001
EISBN: 978-1-62708-356-0
... experiments and writing papers about alloys of iron and varying amounts of chromium, nickel, and carbon. It was generally noticed that alloys with more chromium were somewhat more resistant to corrosion in many environments than carbon steel, but not a single person had experimented with an alloy having...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090443
EISBN: 978-1-62708-266-2
... for determining the susceptibility of stainless steel and related nickel-chromium-iron alloys to stress-corrosion cracking in polythionic acids. ASTM G36-94(2013) Standard practice for evaluating stress-corrosion cracking resistance of metals and alloys in boiling magnesium chloride solution. ASTM G123-00...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790025
EISBN: 978-1-62708-356-0
..., followed by a paper by Dr. Benno Strauss ( Fig. 4 ), who had come from Germany to describe the iron-chromium-nickel alloy that he and Eduard Maurer had developed. Fig. 4 Benno Strauss, who promoted the industrial application of chromium-nickel austenitic steels that he developed with Eduard Maurer...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790007
EISBN: 978-1-62708-356-0
... of advancement happened in the early part of the 20th century with a series of discoveries made within the context of the commercial use of iron-chromium and iron-chromium-nickel alloys and the emergence of metallurgy as a modern engineering discipline. The early discoverers and pioneers of stainless steel...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
... for Determining the Susceptibility of Stainless Steels and Related Nickel-Chromium-Iron Alloys to Stress-Corrosion Cracking in Polythionic Acids • G 36, Practice for Evaluating Stress-Corrosion Cracking Tests in a Boiling Magnesium Chloride Solution • G 37, Practice for Use of Mattsson’s Solution of pH...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250059
EISBN: 978-1-62708-287-7
... Abstract This chapter discusses the evolution of engineering alloy steels, namely chromium, nickel, and nickel-chromium alloy steels. The discussion includes the automotive demand and development of specifications for the alloy steels. It also covers various research on heat treatment of alloy...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790017
EISBN: 978-1-62708-356-0
...) In 1909, Eduard Maurer (1886–1969) joined the research laboratory at the Friedrich A. Krupp works at Essen as their first metallurgist. In 1912, while searching for materials suitable for use in pyrometer tubes, Maurer discovered that some iron-chromium alloys with approximately 8% nickel, which Benno...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250093
EISBN: 978-1-62708-287-7
... for the discovery of these alloys ( Ref 1 ). Two other researchers who studied iron-chromium and iron-chromium-nickel alloys a few years later included the well-known French metallurgist Albert Portevin and an Englishman, W. Giesen. Portevin studied the straight iron-chromium alloys with both low and high...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000009
EISBN: 978-1-62708-313-3
... Abstract This chapter provides a brief overview of nickel-iron-base, cobalt-base, and nickel-base superalloys, discussing their basic metallurgy and defining characteristics. coefficient of thermal expansion superalloys SUPERALLOYS ARE CLASSIFIED according to the main alloying...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170021
EISBN: 978-1-62708-297-6
... iron alloying are chromium, copper, nickel, molybdenum, vanadium, and tin. Table 3 summarizes the effects of various alloying elements on the properties of gray iron. Figure 5 shows the effects of minor alloying additions on hardness and strength. Effects of alloying elements on the mechanical...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790241
EISBN: 978-1-62708-356-0
... was austenitic and had a chemical composition that was virtually the 18% chromium and 8% nickel composition of 18-8, or what became known as type 304 stainless steel. Krupp named the alloy V.2.A and referred to the material as a corrosion-resistant iron-chromium-nickel alloy. The alloy was a new metal very...