1-20 of 183 Search Results for

nickel alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys. age hardening aluminum alloys cobalt alloys copper alloys heat treatment...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
... the Fe-C eutectoid. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. Some of the elements present in steels are austenite stabilizers (e.g., manganese and nickel), some are ferrite stabilizers (e.g., silicon, chromium...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
..., free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310285
EISBN: 978-1-62708-326-3
... composition, classification, and properties of unalloyed and low-alloy cold-worked tool steels; medium and high-alloy cold-worked tool steels; and 18% nickel maraging steels. annealing cold-work tool steel distortion high-speed tool steel hot-work tool steel mold steel normalizing tempering...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310079
EISBN: 978-1-62708-326-3
... periodic inhomogeneities within a given heat, further complicating hardenability measurements. In general, alloying elements can be separated according to whether they are austenite stabilizers, such as manganese, nickel, and copper, or ferrite stabilizers (for example, γ-loop formers), such as...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310203
EISBN: 978-1-62708-326-3
.... Lead: the letter L is inserted after the first two numbers; for example, 41L30. As a general rule, the alloys contained in AISI-SAE alloy steels include manganese and silicon (over specified amounts), nickel, chromium, molybdenum, and vanadium, but in a variety of combinations. Boron, because it...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310029
EISBN: 978-1-62708-326-3
... varying amounts of other alloying elements such as manganese, chromium, nickel, and molybdenum). One important effect is the size of carbon atoms relative to that of iron atoms. The carbon atom is only 1/30 the size of the iron atom, and carbon atoms are sufficiently small to fit between the interstices...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310331
EISBN: 978-1-62708-326-3
... Decrease 130 235 Decrease Nickel 0–1.0 17 31 Decrease 24 43 Decrease Source: Ref 6 The importance of accurate and effective temperature control in the heat treatment of iron castings cannot be overemphasized. The typically complex shapes of iron castings can present difficulties...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310233
EISBN: 978-1-62708-326-3
... ferrite extending to more than 25% Cr at about 1300 °C. Further additions of carbon can expand the loop to the 25% Cr level. Other elements act similarly to chromium when alloyed with iron and also form gamma loops ( Fig. 3 ). Elements that expand the gamma loop of Fe-Cr alloys include carbon, nickel...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.9781627083263
EISBN: 978-1-62708-326-3
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310163
EISBN: 978-1-62708-326-3
... temperature for the specific steel being heated. The steel is then held at this temperature for complete solution of carbides and homogeneous diffusion of carbon in the austenite. Carbon steels with large carbides in the microstructure or alloy steels require either the higher austenitizing temperatures...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... ordinary temperatures. Examples include manganese, nickel, and cobalt. Austenite stabilizers, type II: These are the same as type I except that iron-rich compounds (or the solid solution in the alloying element) become stable at compositions encroaching on the alpha or delta phases. Examples include...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310127
EISBN: 978-1-62708-326-3
... should be considered in determining the Ac 1 . If the Ac 1 has been incorrectly determined and the real Ac 1 for actual existing conditions is exceeded, some austenite will form. This is particularly true of certain manganese-nickel steels that can form remarkably large amounts of austenite at...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420339
EISBN: 978-1-62708-310-2
... nickel-base superalloys. aluminum-copper alloys nickel-base superalloys nonequilibrium reactions precipitation hardening solution heat treating SOLID-STATE PRECIPITATION REACTIONS are of great importance in engineering alloys. Phase diagram configurations that give rise to precipitation...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... Abstract This article examines the role of alloying in the production and use of nickel and its alloys. It explains how nickel-base alloys are categorized and lists the most common grades along with their compositional ranges and corresponding UNS numbers. It describes the role of nearly 20...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170587
EISBN: 978-1-62708-297-6
... Abstract This article discusses the role of alloying in the production and use of low-expansion alloys such as iron-nickel (Invar), iron-nickel-chromium (Elinvar), and iron-nickel-cobalt (Super-Invar and Kovar). It explains how the coefficient of thermal expansion varies with nickel content and...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
..., silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170614
EISBN: 978-1-62708-297-6
... phosphorus irons, low-carbon and silicon steels, ferritic stainless steels, and nickel-iron and iron-cobalt alloys. alloying magnetically soft iron alloys ferromagnetic properties Composition Magnetic metals and alloys are broadly classified into two groups with either hard or soft...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170550
EISBN: 978-1-62708-297-6
... alloys are generally Ag-Cu-Zn alloys, some with additions of cadmium, manganese, nickel, tin, or lithium ( Table 2 ). The most widely used are the alloys BAg-1 (UNS P07450, which contains 45% Ag, 15% Cu, 16% Zn, 24% Cd) and BAg-1a (UNS P07500, containing 50% Ag, 15% Cu, 16% Zn, 18% Cd). The cadmium...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170540
EISBN: 978-1-62708-297-6
... fossil fuels and waste, and as new chemical processing techniques are developed. Although cobalt-base alloys are not as widely used as nickel and nickel-iron alloys in high-temperature applications, cobalt-base heat resistant alloys nevertheless play an important role, by virtue of their excellent...