1-20 of 1359 Search Results for

nickel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... Abstract This article examines the role of alloying in the production and use of nickel and its alloys. It explains how nickel-base alloys are categorized and lists the most common grades along with their compositional ranges and corresponding UNS numbers. It describes the role of nearly 20...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... Abstract Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030074
EISBN: 978-1-62708-282-2
... Abstract This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
... Abstract Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This chapter examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on the corrosion resistance...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
... Abstract Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200295
EISBN: 978-1-62708-354-6
... Abstract Nickel-base castings are produced from a group of alloys with compositions that are typically greater than 50% Ni and less than 10% iron. This chapter presents the casting compositions of nickel-base alloys. It then provides an overview of heat treatment, mechanical properties...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... Abstract Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
... Abstract Nickel-base alloys are generally used in harsh environments that demand either corrosion resistance or high-temperature strength. This article first describes the general welding characteristics of nickel-base alloys. It then describes the weldability of solid-solution nickel-base...
Image
Published: 01 June 2008
Fig. 29.14 Coefficient of linear expansion versus nickel content for iron-nickel alloys measured at 68 °F (20 °C). Iron-nickel alloys contain 0.4% Mn and 0.1% C. Source: Ref 8 More
Image
Published: 01 March 2002
Fig. 9.14 Joint designs and dimensions for arc welding of nickel-base and iron-nickel-base superalloys Base-metal thickness ( t ), in. (mm) Width of groove or bead ( w ), in. (mm) Maximum root opening ( s ), in. (mm) Approximate amount of metal deposited, lb/ft (kg/m) Approximate More
Image
Published: 01 December 2008
Fig. 3 (a) Iron-chromium phase diagram at 8% nickel; (b) iron-nickel phase diagram at 18% chromium More
Image
Published: 01 November 2007
Fig. 3.76 Nickel-rich oxides formed on nickel aluminide IC-218 after 1008 h at 1150 °C (2100 °F) in air with 168 h cycles. Area 1: 11.7% Al, 80.0% Ni, 8.3% Cr. Area 2: 18.8% Al, 49.0% Ni, 32.2% Cr. Area 3: 22.7% Al, 57.1% Ni, 20.2% Cr. Source: Ref 55 More
Image
Published: 01 December 2001
Fig. 7 Weldability diagram for some γ′-strengthened iron-nickel- and nickel-base superalloys, showing influence of total aluminum + titanium hardeners More
Image
Published: 01 December 2001
Fig. 14 Tensile strength of platinum-nickel alloys as a function of nickel content More
Image
Published: 01 December 2001
Fig. 15 Hardness of platinum-nickel alloys as a function of nickel content More
Image
Published: 01 December 2001
Fig. 16 Electrical resistivity of platinum-nickel alloys as a function of nickel content More
Image
Published: 01 December 2001
Fig. 2 Total thermal expansion of iron-nickel alloys showing the effect of nickel content and third elements More
Image
Published: 01 December 2001
Fig. 4 Effect of nickel content on the Curie temperature of iron-nickel alloys More
Image
Published: 01 December 2001
Fig. 5 Effect of nickel content on electrical resistivity of nickel-iron alloys More
Image
Published: 01 August 2005
Fig. 2.30 Gold-nickel phase diagram. The erosion of a nickel substrate by a gold-nickel braze and the associated change to the composition of the filler metal are indicated. More