Skip Nav Destination
Close Modal
By
Avinash Gore, Shashanka Rajendrachari
Search Results for
molybdenum powder
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 271 Search Results for
molybdenum powder
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Comparing the Microstructure of Components Prepared by Various Powder Metallurgy and Casting Methods
> Powder Metallurgy and Additive Manufacturing: Fundamentals and Advancements
Published: 30 September 2024
Fig. 7.10 (a) Microstructure of molybdenum powder sintered at 1900 °C (3450 °F) under 70 MPa pressure for 30 min, showing a carbide layer on the surface. (b) Fractured surface of molybdenum consolidated at 1450 °C (2640 °F) under a load of 70 MPa with a holding time of 30 min. Source: Ref
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040076
EISBN: 978-1-62708-428-4
... Practices for sample preparation to better understand the process related microstructures of thermal spray molybdenum powders. The committee followed a round robin approach to assess metallographic sample preparation by a variety of laboratories. The article summarizes the results of the committee’s work...
Abstract
Molybdenum thermal spray coatings are used in aerospace and other industries for wear resistance applications. Metallographic sample preparation of molybdenum coatings presents unique challenges. The purpose of the investigation described in this article is to determine Accepted Practices for sample preparation to better understand the process related microstructures of thermal spray molybdenum powders. The committee followed a round robin approach to assess metallographic sample preparation by a variety of laboratories. The article summarizes the results of the committee’s work.
Image
Published: 30 April 2020
Fig. 4.2 A lubricant is selected for friction reduction, as evident in this plot for a 3.5 μm molybdenum powder treated with ethylene bis-stearamide as the lubricant. The force required to remove the compact from the tooling decreases rapidly with small concentrations of added lubricant, while
More
Book Chapter
Comparing the Microstructure of Components Prepared by Various Powder Metallurgy and Casting Methods
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400141
EISBN: 978-1-62708-479-6
..., density, and mechanical properties of molybdenum powders consolidated by spark plasma sintering (SPS) ( Ref 7.23 ). The phase-transformation temperature of molybdenum from ductile to brittle mainly depends on its purity and microstructure. Generally, there is a possibility of carbide formation above 1500...
Abstract
This chapter examines the microstructure of metallic components produced by casting and compares them with microstructures achieved by means of powder metallurgy. It shows how metals and alloys obtained by various processing routes differ in terms of grain size, secondary phases, oxide and carbide dispersions, porosity, dendritic formation, and properties such as hardness, toughness, tensile strength, and yield strength.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240583
EISBN: 978-1-62708-251-8
..., and creep resistance. Approximately 90% of molybdenum is used for alloying elements, with only approximately 5% for molybdenum mill products. Molybdenum powder is consolidated or vacuum melted to produce billets that are used for further working or refining. Vacuum-melted billets generally have lower...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. These metals are considered refractory because of their high melting points, high-temperature mechanical stability, and resistance to softening at elevated temperatures. This article discusses the composition, properties, fabrication procedures, advantages and disadvantages, and applications of these refractory metals and their alloys. A comparison of some of the properties of the refractory metals with those of iron, copper, and aluminum is given in a table. The article concludes with a brief section on refractory metal protective coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930353
EISBN: 978-1-62708-359-1
... welds typically demonstrate a large degree of ductility. The only problem that can be encountered is porosity, which often occurs from welding a powder metallurgical product. It has been proposed that tungsten and molybdenum be alloyed with rhenium to improve both room-temperature ductility...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
... to the component, lubricants are selected for reduced tooling wear, as measured by friction reduction. The plot in Fig. 4.2 illustrates this behavior for a 3.5 μm molybdenum powder with addition of ethylene bis-stearamide as the lubricant. The ejection force relates to the ease of removing the compact from...
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000005
EISBN: 978-1-62708-312-6
... higher amount of nickel to counter the ferritizing effect of molybdenum. Compositions of powder metallurgy austenitic stainless steels Table 2.3 Compositions of powder metallurgy austenitic stainless steels Grade Standard Non standard Fe Cr Ni Mn Si S C P Mo N Sn Cu Other...
Abstract
This chapter provides information on the properties and behaviors of stainless steels and stainless steel powders. It begins with a review of alloy designation systems and grades by which stainless steels are defined. It then describes the composition, metallurgy, and engineering characteristics of austenitic, ferritic, martensitic, duplex, and precipitation hardening stainless steel powders and metal injection molding grades.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170540
EISBN: 978-1-62708-297-6
... excellent corrosion resistance in reducing environments. Molybdenum also partitions in the carbides formed in these alloys to enhance the wear resistance. Powder Metallurgy (P/M) Versions Powder metallurgy (P/M) versions of several Stellite alloys (typically containing low levels of boron—1.0% max...
Abstract
This article discusses the properties, behaviors, and uses of cobalt and its alloys. It explains how cobalt alloys are categorized and describes the commercial designations and grades that are available. It also provides composition information and explains how alloying elements and carbides affect toughness, hardness, ductility, and strength as well as resistance to heat, corrosion, and wear.
Image
Published: 30 April 2020
Fig. 4.6 Two scanning electron micrographs of agglomerated small molybdenum particles. The spray dry agglomerates are nearly spherical. They are formed from a slurry of powder, solvent, backbone, and lubricant that is sprayed into a heated chamber, where the droplets form and the solvents
More
Image
Published: 01 June 2016
Fig. 2.13 SEM micrograph of a titanium-molybdenum composite cold sprayed with nitrogen at a process gas pressure of 4.2 MPa (610 psi) and a process gas temperature of 930 °C (1700 °F). The volume content of 50% Mo in the powder blend was reduced to 41% in the final coating at an overall
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170308
EISBN: 978-1-62708-297-6
... to 80 °C (100 to 175 °F), making the metal brittle when cooled to room temperature. Molybdenum mill products are produced by vacuum-arc casting (VAC) or powder metallurgy (P/M) processing. P/M billets are subsequently pressed and sintered followed with extruding, rolling, or forging. Cast ingots...
Abstract
This article discusses the role of alloying in the production and use of common refractory metals, including molybdenum, tungsten, niobium, tantalum, and rhenium. It provides an overview of each metal and its alloys, describing the compositions, properties, and processing characteristics as well as the effect of alloying elements. It also discusses strengthening mechanisms and, where appropriate, corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
..., gold, copper, platinum, chromium, palladium, and nickel Thermochemical reaction: Including routes such as precipitation, reaction, reduction, oxidation, carburization, nitridation, hydrogenation, and related composition changes. The powders include pure elements such as copper, molybdenum...
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000101
EISBN: 978-1-62708-312-6
..., it is generally more economical to employ optimal sintering in combination with a stainless steel that has a lower content of costly constituents than to employ suboptimal sintering of a costlier stainless steel. Alloy modification through the addition of fine powders, for example, chromium or molybdenum...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060273
EISBN: 978-1-62708-261-7
... steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear. alloying elements chemical composition...
Abstract
Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.9781627083126
EISBN: 978-1-62708-312-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170573
EISBN: 978-1-62708-297-6
... the carbides, nitrides, and carbonitrides of titanium, molybdenum, tungsten, tantalum, niobium, vanadium, aluminum, and their solid solutions. The metallic binder phase consists of nickel, cobalt, and molybdenum, or combinations thereof. By this definition, the following materials fall into the group...
Abstract
This article discusses the applications, compositions, and properties of cemented carbides and cermets. It explains how alloying elements, grain size, and binder content influence the properties and behaviors of cemented carbides. It also discusses the properties of steel-bonded carbides, or cermets, the various grades available, and the types of applications for which they are suited.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel...
Abstract
Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel alloys include electrical-resistance alloys, low-expansion alloys, magnetically soft alloys, and shape memory alloys. This chapter discusses the metallurgy, nominal composition, properties, applications, advantages, and disadvantages of these alloys. It also provides information on cobalt wear-resistant alloys and cobalt corrosion-resistant alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170210
EISBN: 978-1-62708-297-6
... Abstract This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels...
Abstract
This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels. It explains how the properties of these steels are determined by alloying elements, such as tungsten, molybdenum, vanadium, manganese, and chromium, and the presence of alloy carbides. It describes the types of carbides that form and how they contribute to wear resistance, toughness, high-temperature strength, and other properties.
1