Skip Nav Destination
Close Modal
Search Results for
microstructural damage
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 464 Search Results for
microstructural damage
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2018
Fig. 6.26 Microstructural evolution during high-temperature creep damage: (a) initial ferrite plus pearlite, (b) in situ spheroidized carbide, (c) grain boundary carbides, (d) creep voids
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030245
EISBN: 978-1-62708-349-2
... and matrix vaporization and degradation as well as microcracking. Bright-field illumination, 25× objective Abstract Lightning damage in polymer composites, as in metal structures, is manifested by damage at both the macroscopic or visual level and within the material microstructure. In addition...
Abstract
Lightning damage in polymer composites, as in metal structures, is manifested by damage at both the macroscopic or visual level and within the material microstructure. In addition to visual damage assessment, non-destructive inspection techniques are employed to detect damage within the composite part. This chapter describes the macroeffects of a lightning strike on composites and discusses the methods involved in the assessment of microstructural damage in composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
... strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction...
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Image
in Failure of Center Support Bearings in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Image
in Failure of Center Support Bearings in an Aircraft Engine
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Fig. CH14.5 Microstructure of the damaged ball bearings showing resolved pearlite and spheroidal carbide. Nital etch
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430409
EISBN: 978-1-62708-253-2
... evaluates the present condition of the tubes and predicts their potential remaining life span. Remaining life assessment of boiler tubes is necessary because the tubes undergo in-service structural and microstructural damage due to mechanical and thermal stresses, and the tubes interact chemically...
Abstract
The power generating industry has become proficient at predicting how long a component will last under a given set of operating conditions. This chapter explains how such predictions are made in the case of boiler tubes. It identifies critical damage mechanisms, progressive failure pathways, and relevant test and measurement procedures. It describes life assessment methods based on hardness, wall thickness, scale formation, microstructure, and creep. It also includes a case study on the determination of the residual life of a secondary superheater tube.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270095
EISBN: 978-1-62708-301-0
... and the balls revealed fine and coarse pearlite, with carbide dispersion ( Fig. CH14.4 , CH14.5 ). No other material abnormality was found in any of the parts. Fig. CH14.3 Microstructure of the damaged outer ring, showing tempered structure. Nital etch Fig. CH14.4 Microstructure of the broken...
Abstract
A pair of bearings mounted side by side in an aircraft engine failed in service. Photographs show that the inner rings were either broken or deformed, the balls were worn and flattened, and the cages severely damaged. The bearing races were damaged as well, but only on one side indicating a directional thrust. In addition to their examination, investigators also conducted metallographic studies and hardness tests, which indicated that the balls and inner rings reached temperatures above 825 °C (1520 °F). Based on their findings, investigators concluded that the bearings failed due to overheating, possibly as a result of misalignment compounded by insufficient lubrication and high speeds.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270191
EISBN: 978-1-62708-301-0
... Abstract This report describes the failure of a gas turbine in a combined-cycle power plant and the examination and tests that were conducted to determine the cause. Based on microstructural analysis, hardness measurements, and tensile tests, the failure was attributed to inadequate clearances...
Abstract
This report describes the failure of a gas turbine in a combined-cycle power plant and the examination and tests that were conducted to determine the cause. Based on microstructural analysis, hardness measurements, and tensile tests, the failure was attributed to inadequate clearances in the seal land region between two stages in the compressor section of the rotor. The report also recommends changes to remediate the problem.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270126
EISBN: 978-1-62708-301-0
... nozzle was also damaged, and based on its microstructure, came very close to melting. Investigators determined that the burner was mounted backwards, facing the compressor rather than the turbine. They also recommended a redesign to prevent the fuel nozzle from being reversed. fuel nozzles...
Abstract
A test flight was cut short after a fire warning came on indicating a problem with one of the four engines on an aircraft. A visual examination following the precautionary landing revealed several burned hoses, a melted bolt, and fuel leaking from the base of the main burner. The fuel nozzle was also damaged, and based on its microstructure, came very close to melting. Investigators determined that the burner was mounted backwards, facing the compressor rather than the turbine. They also recommended a redesign to prevent the fuel nozzle from being reversed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430351
EISBN: 978-1-62708-253-2
... the flattening test. The subject problem of tubes damaged during bending was related to heterogeneity observed in the microstructure of the tube material. A small variation in carbon content from point to point was noticed. Coupled with a faulty melting practice and pouring technique, improper heat treatment had...
Abstract
Boiler tube failures associated with material defects are often the result of poor quality control, whether in primary production, on-site fabrication, storage and handling, or installation. This chapter examines quality-related failures stemming from compositional and structural defects, forming and welding defects, design defects, improper cleaning methods, and ineffective maintenance. It also includes case studies and illustrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430204
EISBN: 978-1-62708-253-2
... results in pitting damage on the tube surface. The presence of sulfur and chlorine (chloride) ions per EDS on the outer surface of the tube indicated localized acidic conditions, causing a cluster of pits on the tube surface. The tunneling seen on the pit contours during microstructural examination...
Abstract
This chapter discusses the effects of corrosion on boiler tube surfaces exposed to water and steam. It describes the process of corrosion, the formation of scale, and the oxides of iron from which it forms. It addresses the primary types of corrosion found in boiler environments, including general corrosion, under-deposit corrosion, microbially induced corrosion, flow-accelerated corrosion, stress-assisted corrosion, erosion-corrosion, cavitation, oxygen pitting, stress-corrosion cracking, and caustic embrittlement. The discussion is supported by several illustrations and relevant case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270045
EISBN: 978-1-62708-301-0
... characteristics, specific shapes, and microstructural changes that could have been caused only by explosive forces. These are the “signatures” that help in confirming damage due to explosion. 6.1 Signatures of Explosion In aircraft accidents, fractures of metals caused by explosive forces are distinct from...
Abstract
This chapter describes the characteristic damage of a mid-air explosion and how it appears in metal debris recovered from crash sites of downed aircraft. It explains that explosive forces produce telltale signs such as petaling, curling, spalling, spikes, reverse slant fractures, and metal deposits. Explosive forces can also cause ductile metals such as aluminum to disintegrate into tiny pieces and are associated with chemicals that leave residues along with numerous craters on metal surfaces. The chapter provides examples of the different types of damage as revealed in the investigation of two in-flight bombings.
Image
in Failures Due to Lack of Quality Control or Improper Quality Control
> Failure Investigation of Boiler Tubes: A Comprehensive Approach
Published: 01 December 2018
Fig. 6.166 Microstructural defects in weld, (a) 200×, (b) 100×, (c) 200×. (d) Microstructure of the weld, 100×. (e) Microstructure of outer surface near weld, 200×. (f) Puncture contours showing corrosion damage, 200×
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430314
EISBN: 978-1-62708-253-2
... (a) crater formed on the outer surface by the impact of fly ash particles, 110×; and (b) twins (Neumann bands) formed in ferrite grains across the section, 400× Microstructural studies also showed marginal corrosion damage on the inner and outer surfaces of the tube with a thin adherent scale...
Abstract
Combustion byproducts such as soot, ash, and abrasive particulates can inflict significant damage to boiler tubes through the cumulative effect of erosion. This chapter examines the types of erosion that occur on the fire side of boiler components and the associated causes. It discusses the erosive effect of blowing soot, steam, and fly ash as well as coal particle impingement and falling slag. It also includes several case studies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270182
EISBN: 978-1-62708-301-0
... of Engineering Structures: Case Histories Fig. CH50.2 Damaged rotor C Fig. CH50.3 Close-up view of the damage to the rst-stage disc 20 Tenon Fig. CH50.4 Microstructure from the root of blade C showing tempered martensite Shroud 5 mm Fig. CH50.6 A section view of blade G at the tenon end showing the gap Fig...
Abstract
A turbine in a fertilizer plant began to vibrate and was shut down to investigate the problem. A first stage rotor blade was found fractured and was removed along with several other blades for further examination. Based on their observations and testing, investigators concluded that the blade cracked at the tenon due to high hardness of the base material. Vibration caused the crack to grow, leading to final failure by fatigue.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040030
EISBN: 978-1-62708-428-4
.... The aim of metallographic preparation is to reveal an undisturbed thermal spray microstructure for analytical or microscopy work, while minimizing the amount of damage introduced to the coated sample. [ 3 ] The preparation process presented here was adapted from the ASTM E1920, Standard Guide...
Abstract
This article presents best practices for the metallographic preparation of specimens produced via thermal spray coating methods. It outlines typical metallographic preparation process flow, highlighting important considerations for obtaining a clear and representative specimen suitable for characterization via examination techniques, such as optical or electron microscopy. The process flow includes preliminary resin infiltration, sectioning, mounting, grinding, and polishing. To aid in the identification and resolution of common issues during subsequent specimen analysis, the article presents common issues, along with causes and mitigation strategies. It describes the processes involved in the interpretation of the thermal spray coating microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
... stress 4.0 Fig. 9.45 ... ... Assumed strain range ... ... 2.0 Fig. 9.46 In-service degradation of: Base metal 2.0 J 5 to 15 Fig. 9.39 Coating 2.0 J 2 J Inaccuracy of damage rules None J 3 J Stress and thermal gradients in component Unknown...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430325
EISBN: 978-1-62708-253-2
...) shows the microstructure of the fracture surface of the thin and thick tubes at the ID, indicating branched hairline cracks filled with oxide scales originating from the damaged ID surface. Figure 6.148(c) and (d) shows the etched view of the weld and heat-affected zone, respectively, revealing...
Abstract
Boiler tubes subjected to cyclic or fluctuating loads over extended periods of time are prone to fatigue failure. Fatigue can occur at relatively low stresses and is implicated in almost 80% of the tube failures in firetube boilers. This chapter covers the most common forms of boiler tube fatigue, including mechanical or vibrational fatigue, corrosion fatigue, thermal fatigue, and creep-fatigue interaction. It discusses the causes, characteristics, and impacts of each type and provides several case studies.
Image
Published: 01 December 2018
Fig. 6.90 Microstructures, (a) at core of ferrite and pearlite, 100×; and (b) at puncture location showing cavitation damage, 400×
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430149
EISBN: 978-1-62708-253-2
... scattered creep cavities pointing toward onset of creep damage and carbides along grain boundaries, 3500× Microstructural examination of an unaffected location revealed grains of ferrite with partially degraded bainite and globular carbides ( Fig. 6.10a ). The microstructure at the rupture location...
Abstract
Boiler tubes operating at high temperatures under significant pressure are vulnerable to stress rupture failures. This chapter examines the cause, effect, and appearance of such failures. It discusses the conditions and mechanisms that either lead to or are associated with stress rupture, including overheating, high-temperature creep, graphitization, and dissimilar metal welds. It explains how to determine which mechanisms are in play by interpreting fracture patterns and microstructural details. It also describes the investigation of several carbon and low-alloy steel tubes that failed due to stress rupture.