1-20 of 1023 Search Results for

microscopy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110042
EISBN: 978-1-62708-247-1
... Abstract Moore's Law has driven many degree circuit features below the resolving capability of optical microscopy. Yet the optical microscope remains a valuable tool in failure analysis. This article describes the physics governing resolution and useful techniques for extracting the small...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110067
EISBN: 978-1-62708-247-1
... properties, which determines optical contrast. Tissue samples normally required complicated chemical staining for optical microscopy. In the years following its initial implementation, the frequency of the Stanford SAM was continuously increased until the lateral resolution was comparable to that of optical...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110413
EISBN: 978-1-62708-247-1
... down the SEM to transfer a sample, it is well worth the effort to first map out a plan of action using a visual inspection in the optical microscope. A comparison between SEM and optical microscopy is summarized in Table 1 . Comparison of SEM and Optical Microscopy. Table 1 Comparison of SEM...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110461
EISBN: 978-1-62708-247-1
... Abstract The ultimate goal of the failure analysis process is to find physical evidence that can identify the root cause of the failure. Transmission electron microscopy (TEM) has emerged as a powerful tool to characterize subtle defects. This article discusses the sample preparation procedures...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110485
EISBN: 978-1-62708-247-1
... Abstract Scanning Probe Microscope (SPM) has an increasing important role in the development of nanoscale semiconductor technologies. This article presents a detailed discussion on various SPM techniques including Atomic Force Microscopy (AFM), Scanning Kelvin Probe Microscopy, Scanning...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
... Abstract This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850267
EISBN: 978-1-62708-260-0
... Abstract This chapter discusses the tools and techniques of light microscopy and how they are used in the study of materials. It reviews the basic physics of light, the inner workings of light microscopes, and the relationship between resolution and depth of field. It explains the difference...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850410
EISBN: 978-1-62708-260-0
... Abstract This chapter covers the emerging practice of quantitative microscopy and its application in the study of the microstructure of metals. It describes the methods used to quantify structural gradients, volume fraction, grain size and distribution, and other features of interest...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220085
EISBN: 978-1-62708-259-4
... Abstract This chapter discusses the use of electron microscopy in metallographic analysis. It explains how electrons interact with metals and how these interactions can be harnessed to produce two- and three-dimensional images of metal surfaces and generate crystallographic and compositional...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030089
EISBN: 978-1-62708-349-2
... the paint layer (10× objective). (b) A fluorescent penetration dye (Magnaflux Zyglo) was applied on the surface of the specimen to enhance the contrast of the microcracks. Epi-fluorescence, 390–440 nm excitation, 10× objective Abstract The analysis of composite materials using optical microscopy...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
... are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials. References References 1. Halpin J.C. , The Role of the Polymeric...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.9781627082914
EISBN: 978-1-62708-291-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.9781627082921
EISBN: 978-1-62708-292-1
Image
Published: 01 March 2002
Fig. B.8 Cast Rene 220 nickel-base superalloy using dark-field electron microscopy. Showing γ″ disks with finer, less extensive γ′ in background. The specimen was electropolished and etched with methanolic 10% HCl. More
Image
Published: 01 November 2019
Figure 17 Example of particles. A. optical microscopy: stainless steel particle exposed after FIB. B. SEM-EDX mapping: Cl-containing organic particle in SiO2 filled molding compound exposed after polish/look. More
Image
Published: 01 November 2019
Figure 9 IR microscopy seeing particles through the silicon cap over MEMS. From [12] . More
Image
Published: 01 November 2019
Figure 10 SEM of particles found with IR microscopy as shown in previous figure. From [12] . More
Image
Published: 01 November 2019
Figure 2 The inspection of IC packages with pulse-echo acoustic microscopy. More