Skip Nav Destination
Close Modal
Search Results for
microalloying
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 122 Search Results for
microalloying
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410293
EISBN: 978-1-62708-265-5
... Medium-carbon steels are typically hardened for high-strength, high-fatigue-resistant applications by austenitizing, quenching to martensite, and tempering. This chapter explains how microalloying with vanadium, niobium, and/or titanium provides an alternate way to improve the mechanical...
Abstract
Medium-carbon steels are typically hardened for high-strength, high-fatigue-resistant applications by austenitizing, quenching to martensite, and tempering. This chapter explains how microalloying with vanadium, niobium, and/or titanium provides an alternate way to improve the mechanical properties of such steels. It also addresses microalloyed forging steels and explains how nontraditional bainitic microstructures can be produced by direct cooling after forging.
Image
Published: 01 June 2008
Fig. 20.15 Recrystallization kinetics of microalloyed steels. Source: Ref 16
More
Image
in Structural Steels and Steels for Pressure Vessels, Piping, and Boilers
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 14.7 CCT curve of a microalloyed steel containing C = 0.07%, Mn = 1.32%, Si = 0.13%, Al = 0.013%, Nb = 0.036%, and N = 0.0013%. Austenitizing: 900 °C (1650 °F), 360 s. In each cooling curve, the final hardness is also indicated. B = bainite, F = ferrite, P = pearlite. Source: Ref 9
More
Image
Published: 01 January 2015
Fig. 8.22 Relative austenite grain-coarsening characteristics of various microalloyed steels. Source: Ref 8.37
More
Image
in Metallographic Specimen Preparation
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 7.42 Micrograph showing microstructure of a vanadium microalloyed plate steel with too much pressure being applied during polishing with 0.3 μm alumina. The black arrow points to a ferrite grain with a smeared surface. The outlined white arrow shows a normal ferrite grain. 2% nital etch
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.2 Left diagram: schedule of operations required to strengthen microalloyed forged bar steels by direct cooling after forging. Right diagram: schedule of operations to produce cold-finished bars
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.5 Precipitate distributions in microalloyed steels containing vanadium and niobium. (a) Nb-rich precipitates on deformed austenite substructure. (b) Interphase V-rich precipitates. Dark-field transmission electron micrographs. Courtesy of S.W. Thompson. Source: Ref 14.8
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.8 Intragranular ferrite formation at MnS particles in a V-microalloyed steel. Light micrograph, nital etch. Source: Ref 14.14
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.9 Vanadium-rich particles on a MnS inclusion in a medium-carbon microalloyed steel. (a) Secondary electron SEM micrograph, (b) Vanadium Energy Dispersive Spectroscopic SEM map. Courtesy of Lee Rothleutner, Colorado School of Mines. Source: Ref. 14.18
More
Image
in Introduction to Steels and Cast Irons
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 1.7 Micrograph of a microalloyed 450 MPa (65 ksi) yield strength linepipe steel showing a microstructure consisting of ferrite (light etching constituent), a small amount of pearlite (dark etching constituent), and martensite (gray etching constituent). Etched in 4% picral followed by 2
More
Image
in Alteration of Microstructure
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 3.13 Microstructure of a hot-rolled, high-strength microalloyed steel plate with elongated pearlite bands (dark constituent) in a ferrite matrix. 4% picral followed by 2% nital. 500×
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170193
EISBN: 978-1-62708-297-6
.... high-strength low-alloy steel microalloying Composition Introduction and Overview High-strength low-alloy (HSLA) steels, or microalloyed steels, are designed to provide better mechanical properties and/or greater resistance to atmospheric corrosion than conventional carbon steels...
Abstract
This article discusses the effect of alloying on high-strength low-alloy (HSLA) steels. It explains where HSLA steels fit in the continuum of commercial steels and describes the six general categories into which they are divided. It provides composition data for standard types or grades of HSLA steel along with information on available mill forms, key characteristics, and intended uses. The article explains how small amounts of alloying elements, particularly vanadium, niobium, and titanium, control not only the properties of HSLA steels, but also their manufacturability.
Image
Published: 01 August 1999
Fig. 5.13 (Part 1) Higher-strength grade of HSLA hot-rolled steel strip. (a) to (g) Low carbon, high manganese, microalloys: molybdenum, niobium, and titanium. 0.065C-0.35Si-1.38Mn-0.24Mo-0.065Nb-0.017Ti-0.003V-0.002S-0.013P (wt%). 240 HV. (a) Quarter-thickness region. Nital. 100×. (b
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410133
EISBN: 978-1-62708-265-5
...), and precipitates of microalloying elements. Nevertheless, the excellent hot ductility of austenite is a major contributor to the cost-effective manufacture of steel structures, especially when heavy, as-cast sections must be converted to smaller sections and shapes. Austenite is the parent phase of all...
Abstract
Austenite is the key to the versatility of steel and the controllable nature of its properties. It is the parent phase of pearlite, martensite, bainite, and ferrite. This chapter discusses the importance of austenite, beginning with the influence of austenitic grain size and how to accurately measure it. It then describes the principles of austenite formation and grain growth and examines several time-temperature-austenitizing diagrams representing various alloying and processing conditions. The chapter concludes with a discussion on hot deformation and subsequent recrystallization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
... information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed. carbon steel composition grain size hardenability low-alloy steel PLAIN CARBON STEELS are by far...
Abstract
This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels, free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed.
Image
Published: 01 December 2001
Fig. 5 Processing cycles for conventional (quenched-and-tempered: top) and microalloyed steels (bottom)
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.11 Comparison of fatigue behavior of quench and tempered steel and microalloyed steel at the same hardness. Source: Ref 14.19
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.3 Observed and calculated yield strengths for steels with ferrite/pearlite microstructures and various microalloying elements. Source: Ref 14.6
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.7 Schematic diagram of the stages of intragranular ferrite formation on a manganese sulfide particle in V-microalloyed steel. Source: Ref 14.17
More
Image
in Non-Martensitic Strengthening of Medium-Carbon Steels—Microalloying and Bainitic Strengthening
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 14.14 Correlation of yield and ultimate tensile strengths with Vickers hardness for steels with ferrite/pearlite microstructures, with and without microalloying. Source: Ref 14.20
More
1