Skip Nav Destination
Close Modal
Search Results for
metallic specimens
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 731 Search Results for
metallic specimens
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 15 Specimen for testing the cleavage strength of metal-to-metal adhesive bonds. Source: ASTM D 1062
More
Image
Published: 01 November 2007
Fig. 5.63 Mass gain (hatched data) due to coke deposits and metal loss of specimen (solid data) due to metal dusting as well as mass gain of specimen (solid data) due to possible oxidation/carburization after exposure at 650 °C (1200 °F) in H 2 -24.7CO-1.9H 2 O ( a c = 15). X18 CrN28 (Fe
More
Image
Published: 01 December 2004
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910427
EISBN: 978-1-62708-250-1
... and the condition of the metal surface. These factors are especially pertinent when various forms of localized corrosion are under evaluation in complex alloys. The uniformity of the metal sample should be checked in advance as part of the plan for preparation of the test specimens. Problems resulting from...
Abstract
Corrosion testing and monitoring are powerful tools in the fight to control corrosion. This chapter provides a general overview of three major categories of corrosion tests, namely laboratory tests, pilot-plant tests, and field tests. It begins with brief sections describing the purposes of corrosion tests, the logical steps in a test program, and the preparation and cleaning of test specimens. The focus then moves on to discuss the types and applications of these test categories and the associated evaluation procedures. Excluding electrochemical tests which are addressed separately in this chapter, the other laboratory tests covered under this category are simulated atmosphere tests, salt-spray tests, and immersion tests. Only corrosion testing in the atmosphere is discussed in the section on field tests. Corrosion monitoring techniques are finally considered, covering the characteristics of corrosion monitoring techniques, the factors to be considered in selecting a corrosion-monitoring method, and the strategies in corrosion monitoring.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060013
EISBN: 978-1-62708-355-3
... deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers...
Abstract
This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion of properties determined from the stress-strain curve of a metal, namely, tensile strength, yield strength, measures of ductility, modulus of elasticity, and resilience. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. The chapter reviews the effect of strain rate and temperature on the stress-strain curve and describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.9781627083553
EISBN: 978-1-62708-355-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630281
EISBN: 978-1-62708-270-9
... that is absorbed in fracture is calculated from the height to which the striker would have risen had there been no specimen and the height to which it actually rises after fracture of the specimen. chromizing. An elevated-temperature process by which a ferrous metal absorbs chromium into the surface when exposed...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060265
EISBN: 978-1-62708-355-3
.... Erichsen cup test. A cupping test used for assessing the ductility of sheet metal. The method consists of forcing a conical or hemispherical-ended plunger into the specimen and measuring the depth of the impression at fracture. Compare with Olsen cup test and Swift cup test. extensometer. An instrument...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys. Selected References Selected References • Brooks C.R. , Plastic Deformation and Annealing , Heat...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
...-weld-metal specimens using a standard tensile test ( Ref 18 ), but with specimens removed from test plates welded according to AWS-specified procedures ( Ref 19 ). These tests form the basis for the assignment of yield and ultimate strength values to welds made using a specific electrode and according...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... Requirements Special techniques are not usually necessary in preparing specimens for the SEM. Fracture specimens need to be cut to a size, without contaminating the surface, that will fit within the specimen chamber of the microscope. The specimen can be glued to a metallic stub that fits...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060195
EISBN: 978-1-62708-355-3
... for testing the cleavage strength of metal-to-metal adhesive bonds. Source: ASTM D 1062 Fig. 16 Specimen for testing cleavage peel (by tension loading). Source: ASTM D 3807 Fig. 17 Boeing wedge test (ASTM D 3762). (a) Test specimen. (b) Typical crack propagation behavior at 49 °C (120 °F...
Abstract
This chapter focuses on tensile testing of three types of engineering components that undergo significant loading in tension, namely, threaded fasteners and bolted joints; adhesive joints; and welded joints. It describes the standardized tensile test for externally threaded fasteners and provides a brief background on relationships among torque, angle-of-turn, tension, and friction. The chapter also describes the test methods covered in the ASTM F 606M standard, namely, product hardness; proof load by length measurement, yield strength, or uniform hardness; axial tension testing of full-sized products; wedge tension testing of full-sized products; tension testing of machined test specimens; and total extension at fracture testing. Finally, the chapter covers tensile testing of adhesive and welded joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180197
EISBN: 978-1-62708-256-3
... that can swing as a pendulum. The energy that is absorbed in fracture is calculated from the height to which the striker would have risen had there been no specimen and the height to which it actually rises after fracture of the specimen. chromizing. An elevated-temperature process by which a ferrous metal...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.9781627082563
EISBN: 978-1-62708-256-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310119
EISBN: 978-1-62708-346-1
... the IRHD-N and VLRH hardness scales Fig. 19 Indenter and pressure foot in the Barcol procedure. Source: Ref 7 Fig. 20 Measuring procedure with the Barcol method. Source: Ref 7 Fig. 3 Typical hardness values of plastics compared with the hardness values of metals. HDPE...
Abstract
This chapter reviews the tests and procedures used for measuring hardness of plastics and elastomers. The conventional testing methods (Rockwell, Vickers, Brinell, and Knoop) used for testing of metals are based on the idea that hardness represents the resistance against permanent plastic deformation of the material to be tested. However, elastic deformation must be considered in hardness measurement of elastomers. This chapter discusses the equipment and processes involved in the durometer (Shore) test, the International Rubber Hardness Degree test, and other specialized tests. It presents the criteria that can be used to select a suitable hardness testing method for elastomers or plastics and describes processes involved in specimen preparation and equipment calibration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
..., a metallographer is a person who has the skill to properly prepare a specimen of a metal or alloy in order to allow examination and interpretation of its microstructure. In this technological age, the term “metallographer” is becoming somewhat of a misnomer, because today it covers not only metals but ceramics...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230199
EISBN: 978-1-62708-298-3
... beryllium are to be applied. Proper preparation of the specimens presents a considerable problem. Since most beryllium metal contains a certain amount of hard constituents (primarily BeO), which are readily pulled out of the metallic matrix, the beryllium specimens must be polished very carefully. 16.1...
Abstract
This chapter explains how to safely prepare beryllium alloy samples for metallographic analysis. It describes grinding, polishing, and etching procedures in detail. It also discusses the identification of major and minor constituents and the general appearance of beryllium microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090443
EISBN: 978-1-62708-266-2
...(2013): Standard test method for determining threshold stress intensity factor for environmentally-assisted cracking of metallic materials. ASTM E1823: Standard terminology related to Fatigue and Fracture testing. ASTM G30: Practice for making and using U-Bend stress-corrosion test specimens...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720161
EISBN: 978-1-62708-305-8
... metallographic studies require more than one specimen. For example, a study of deformation in wrought metals usually requires two sections–one perpendicular and the other parallel to the direction of deformation. Sampling Bulk samples for sectioning may be removed from larger pieces or parts using methods...
Abstract
This chapter describes the methods and equipment applicable to metallographic studies and discusses the preparation of specimens for examination by light optical microscopy. Five major operations for preparation of metallographic specimens are discussed: sectioning, mounting, grinding, polishing, and etching. The discussion covers their basic principles, advantages, types, and applications, as well as the equipment setup. The chapter includes tables that list etchants used for microscopic examination. It also provides information on microscopic examination, microphotography, and the effects of grain size on the structural properties of the material.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820203
EISBN: 978-1-62708-339-3
... involves the exposure and subsequent evaluation of actual metal specimens or “coupons.” Small specimens are exposed to the environment of interest for a specific period of time and subsequently removed for weight-loss measurement and more detailed examination. ASTM G 4 ( Ref 1 ) was designed to provide...
Abstract
This chapter addresses in-service monitoring and corrosion testing of weldments. Three categories of corrosion monitoring are discussed: direct testing of coupons, electrochemical techniques, and nondestructive testing techniques. The majority of the test methods for evaluating corrosion of weldments are used to assess intergranular corrosion of stainless steels and high-nickel alloys. Other applicable tests evaluate pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion. Each of these test methods is reviewed in this chapter.
1