Skip Nav Destination
Close Modal
By
Omar Maluf, Luciana Sgarbi Rossino, Camilo Bento Carletti, Celso Roberto Ribeiro, Clever Ricardo Chinaglia ...
Search Results for
metal shrinkage
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 309
Search Results for metal shrinkage
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420429
EISBN: 978-1-62708-310-2
... dendrite arm spacing, and the factors that contribute to porosity and shrinkage. dendrite metal shrinkage porosity segregation solidification structures ALMOST ALL METALS AND ALLOYS are produced from liquids by solidification. Sometimes, the liquid metal is poured in a mold with a shape...
Abstract
The solidification process has a major influence on the microstructure and mechanical properties of metal casting as well as wrought products. This appendix covers the fundamentals of solidification. It discusses the formation of solidification structures, the characteristics of planar, cellular, and dendritic growth, the basic freezing sequence for an alloy casting, and the variations in cooling rate, heat flow, and grain morphology in different areas of the mold. It also describes the types of segregation that occur during freezing, the effect of solidification rate on secondary dendrite arm spacing, and the factors that contribute to porosity and shrinkage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240095
EISBN: 978-1-62708-251-8
... that is open to the surface in finished castings is sometimes ground out and weld-repaired. Both gas evolution and metal shrinkage during casting can produce porosity. Gas Porosity Gas porosity is caused by the absorption of gases in the liquid metal prior to casting. The most troublesome gas...
Abstract
Almost all metals and alloys are produced from liquids by solidification. For both castings and wrought products, the solidification process has a major influence on both the microstructure and mechanical properties of the final product. This chapter discusses the three zones that a metal cast into a mold can have: a chill zone, a zone containing columnar grains, and a center-equiaxed grain zone. Since the way in which alloys partition on freezing, it follows that all castings are segregated to different categories. The different types of segregation discussed include normal, gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative pattern casting, investment casting, permanent mold casting, and die casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140047
EISBN: 978-1-62708-335-5
..., and shorter reaction times to achieve low hydrogen levels. The use of active fluxing gases and filtration removes oxides, permitting acceptable quality castings to be produced from metal with higher hydrogen contents. 5.2 Shrinkage Porosity For most metals, the transformation from the liquid...
Abstract
Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects. Nonmetallic inclusions entrained before solidification influence porosity formation and mechanical properties. This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200164
EISBN: 978-1-62708-354-6
... features to wood and metal patterns. Making complete patterns of this material is not usually recommended, as it is subject to high shrinkage and is quite brittle. Core Box Construction and Service Life Cores are used to form internal passageways and cavities. In some cases, a core may be used...
Abstract
Pattern equipment is the tooling utilized to form the mold cavity of a casting. This chapter first discusses the following factors that should be considered for determining the type of pattern equipment: number of castings to be produced, mold processes to be employed, dimensional tolerances required, casting design, and pattern cost. It also discusses the factors that should be considered when engineering a pattern. The chapter then presents the types of materials used for pattern construction. It provides an overview of patternmaker's shrinkage allowance. Finally, the chapter presents the factors that govern the space requirements for pattern storage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
... these defects, the most important ones are those generated by the interaction of gas and metal that promote the appearance of voids. In general, there are two kinds of voids: those generated by gas, and shrinkage pores. Porosity Caused by Gas One of the factors that must be considered in steel casting...
Abstract
This chapter describes cast steel features that may be identified or attributed to component failure during heat treatment or subsequent processing or service, namely porosity (generated by the presence of gas as well as by shrinkage pores), decarburization, cold joint, and inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
... Abstract This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements...
Abstract
This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress. The chapter also includes a section on the uses of thermoplastic and thermosetting resins and provides information on fabrication processes and fastening and joining methods.
Image
in Solidification, Segregation, and Nonmetallic Inclusions
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
solidification. The liquid metal contained in the hot top can feed the ingot during the whole solidification process, compensating for shrinkage. All shrinkage volume is concentrated in the hot top. A combination of proper mold taper and mold design with an adequate hot top prevents formation of a secondary pipe
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290169
EISBN: 978-1-62708-319-5
... Abstract After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion...
Abstract
After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion on the events that are contributing to sintering densification, followed by a discussion on the driving forces, such as surface energy, and high-temperature atomic motion as well as the factors affecting these processes. The process of microstructure evolution in sintering is then described, followed by a discussion on the tools used for measuring bulk properties to monitor sintering and density. The effects of key parameters, such as particle size, oxygen content, sintering atmosphere, and peak temperature, on the sintered properties are discussed. Further, the chapter covers sintering cycles and sintering practices adopted as well as provides information on dimensional control and related concerns of sintering. Cost issues associated with sintering are finally covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400115
EISBN: 978-1-62708-479-6
... Abstract This chapter describes how forces and temperatures generated during sintering influence particle bonding, grain growth, shrinkage, and densification as well as bulk material properties. It explains how density, a good predictor of mechanical and electrical properties, can be controlled...
Abstract
This chapter describes how forces and temperatures generated during sintering influence particle bonding, grain growth, shrinkage, and densification as well as bulk material properties. It explains how density, a good predictor of mechanical and electrical properties, can be controlled by proper selection of sintering time, temperature, and particle size for various steels, ceramics, and tungsten and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200115
EISBN: 978-1-62708-354-6
... of sufficient feed metal to compensate for volumetric contraction at the time of solidification is the cause of shrinkage cavities. These cavities form when extra feed metal is not provided and are found in sections of the casting that solidify late in the solidification process. Gross shrinkage results...
Abstract
This chapter explains various aspects of the foundry process that the design engineer should consider when designing steel castings. It discusses special feeding aids, such as tapers, padding, ribs, and chills that may be used by foundry personnel to promote directional solidification. The chapter addresses the design of castings to reduce the occurrence of internal shrinkage. It provides a detailed discussion on design considerations for molding, cleaning, machining, and function.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
... is shaken out of the mold, and the risers and gates are removed. Risers (also called feeders) are shapes that are attached to the casting to provide a liquid-metal reservoir and control solidification shrinkage. Metal in the risers is needed to compensate for shrinkage that occurs during cooling...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930071
EISBN: 978-1-62708-359-1
... of the plate. They are caused by weld metal shrinkage in the joint and can be increased by residual stresses and by loading. The weld orientation is such that the stress acts through the joint across the plate thickness (the z direction). The fusion line beneath the weld is roughly parallel to the lamellar...
Abstract
The formation of defects in materials that have been fusion welded is a major concern in the design of welded assemblies. This article describes four types of defects that, in particular, have been the focus of much attention because of the magnitude of their impact on product quality. Colloquially, these four defect types are known as hot cracks, heat-affected zone microfissures, cold cracks, and lamellar tearing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000039
EISBN: 978-1-62708-312-6
... Abstract This chapter discusses the methods by which stainless steel powders are shaped and compacted prior to sintering, including rigid die compaction, metal injection molding, extrusion, and hot isostatic pressing. It explains where each process is used and how processing parameters...
Abstract
This chapter discusses the methods by which stainless steel powders are shaped and compacted prior to sintering, including rigid die compaction, metal injection molding, extrusion, and hot isostatic pressing. It explains where each process is used and how processing parameters, such as temperature and pressure, and powder characteristics, such as particle size and shape, influence the quality of manufactured parts. It describes the various stages of metal powder compaction, the role of lubricants, and how to account for dimensional changes in the design of tooling and process sequences.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220129
EISBN: 978-1-62708-259-4
... are designed to make sure they are the last portion of the liquid mass to solidify, providing a permanent supply of liquid metal to “feed” the part as shrinkage occurs. A simple indicator of solidification time is the volume/area ratio and, for simple shapes, Chvorinov’s rule ( Fig. 8.3 ) gives good results...
Abstract
Many of the structural characteristics of steel products are a result of changes that occur during solidification, particularly volume contractions and solute redistribution. This chapter discusses the solidification process and how it affects the quality and behaviors of steel. It explains how steel shrinks as it solidifies, causing issues such as pipe and voids, and how differences in the solubility of solid and liquid steel lead to compositional heterogeneities or segregation. It describes the dendritic nature of solidification, peritectic and eutectic reactions, microporosity, macro- and microsegregation, and hot cracking, as well as the effects of solidification and remelting on castings, ingots, and continuous cast products. It explains how to determine where defects originate in continuous casters and how to control alumina, sulfide, and nitride inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... Abstract Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320217
EISBN: 978-1-62708-332-4
... that are hot-topped by liquid metal as the feeders feed the solidification shrinkage. They are usually poured with two (sometimes three) ladles that pour simultaneously from overhead cranes. Fig. 12.13 Rolling mill. Source: Ref 7 Fig. 12.14 Forging press for free forging. Source: Ref 8...
Abstract
Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying elements on steel. Then, it provides an overview of steel casting applications. Next, the chapter reviews engineering guidelines for steel castings and feeder design. The following section provides information on feeding aids. Further, the chapter describes the elements of gating systems for steel castings. It also describes the alloys, properties, applications, and engineering details of steel. Finally, the chapter explains defects in steel castings and presents guidelines for problem solving with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610585
EISBN: 978-1-62708-303-4
... piece. Gray areas are pearlite; white areas, ferrite. 2% nital. Original magnification: 50×. Source: Ref 2 Factors that work against obtaining a perfect homogeneous product include: Fast shrinkage as the molten metal cools (roughly 5% in volume for steel) Gaseous products...
Abstract
This appendix provides detailed information on design deficiencies, material and manufacturing defects, and service-life anomalies. It covers ingot-related defects, forging and sheet forming imperfections, casting defects, heat treating defects, and weld discontinuities. It shows how application life is affected by the severity of service conditions and discusses the consequences of using inappropriate materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290099
EISBN: 978-1-62708-306-5
.... High tensile stresses exist along section D–D in and adjacent to the weld. Compressive stresses are produced in areas away from the weld. Because of solidification shrinkage and thermal contraction of the weld metal during welding, the workpiece has a tendency to distort. Several types of weld...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source causes physical state changes, metallurgical phase transformations, and transient thermal stresses and metal movement. This chapter begins by discussing weld metal solidification behavior and the solid-state transformations of the main classes of metals and alloys during fusion welding. The main classes include work- or strain-hardened metals and alloys, precipitation-hardened alloys, transformation-hardened steels and cast irons, stainless steels, and solid-solution and dispersion-hardened alloys. The following section provides information on the residual stresses and distortion that remain after welding. The focus then shifts to distortion control of weldments. Inclusions and cracking are discussed in detail. The chapter also discusses the causes for reduced fatigue strength of a component by a weld: stress concentration due to weld shape and joint geometry; stress concentration due to weld imperfections; and residual welding stresses. Inspection and characterization of welds are described in the final section of this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340083
EISBN: 978-1-62708-427-7
... solution heat treatment (SHT). Shrinkage porosity is found in castings when inadequate feeding of molten metal occurs during the start of solidification. The most common aluminum alloys will shrink approximately 7% as they solidify (depending on the alloy composition). The HPDC process uses high pressure...
Abstract
This chapter describes the processes and alloys used in the casting of aluminum components, the advantages and disadvantages of the different shape-casting methods, and the major factors that influence alloy selection for shape-casting applications. An overview of the heat treatment of cast products is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560427
EISBN: 978-1-62708-291-4
... molten metal into a mold to produce an object of desired shape. casting shrinkage. The amount of dimensional change per unit length of the casting as it solidifies in the mold or die and cools to room temperature after removal from the mold or die. There are three distinct types of casting shrinkage...
Abstract
This appendix is a compilation of terms and definitions related to light microscopy of carbon steels.
1