Skip Nav Destination
Close Modal
Search Results for
melting furnaces
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 431 Search Results for
melting furnaces
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2006
Image
in Process Design for Specific Applications
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 6.21 Selection of power-supply frequency for coreless induction melting furnaces as a function of furnace size. A = recommended frequency regime. B = acceptable frequency. C = furnace frequencies which have been used but which do not provide good results. D = unusable furnace frequencies
More
Image
Published: 01 May 2018
FIG. 6.2 Crucible melting furnace, circa 1829. This is the oldest example of the Benjamin Huntsman process.
More
Image
Published: 01 December 2006
Image
in Process Design for Specific Applications
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Image
in Process Design for Specific Applications
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Image
Published: 01 November 2013
Image
in Special Applications of Induction Heating
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 11.26 Two views of a small vacuum induction melting furnace Source: Vacuum Industries, Inc.
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.9 Consumable electrode titanium vacuum arc melting furnace with centrifugal casting table. Courtesy of Howmet
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... Abstract This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200187
EISBN: 978-1-62708-354-6
... Abstract This chapter provides an overview of the types of melting furnaces and refractories for steel casting. It then presents information about arc furnace melting and induction melting cycles. The chapter also describes methods for the removal of phosphorous, the removal of sulfur...
Abstract
This chapter provides an overview of the types of melting furnaces and refractories for steel casting. It then presents information about arc furnace melting and induction melting cycles. The chapter also describes methods for the removal of phosphorous, the removal of sulfur, and the recovery of elements from slag. It then presents an overview of argon-oxygen-decarburization (AOD) refining and types of ladles. The chapter describes chemical analysis that is performed using either optical emission or x-ray spectrographs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders. atomization foundry casting melting furnaces nonferrous casting alloys...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220001
EISBN: 978-1-62708-341-6
.... Initially, this was done using metal or electrically conducting crucibles. Later, Ferranti, Colby, and Kjellin developed induction melting furnaces which made use of nonconducting crucibles. In these designs, electric currents were induced directly into the charge, usually at simple line frequency, or 60 Hz...
Abstract
Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used for heating workpieces prior to metalworking and in heat treating, welding, and melting. This technique also lends itself to various other applications involving packaging and curing of resins and coatings. This chapter provides a brief review of the history of induction heating and discusses its applications and advantages.
Image
Published: 01 December 2018
Image
in Process Design for Specific Applications
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 6.22 Relationship among furnace capacity, melting time, and power requirements for coreless induction melting of irons and steels Source: Radyne, Inc.
More
Image
in Process Design for Specific Applications
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 6.23 Power consumption quoted by furnace manufacturers for melting of cast iron in line-frequency induction furnaces of various capacities. From W. A. Parsons and J. Powell, Proc. Conf. on Electric Melting and Holding Furnaces in Iron Foundries , University of Warwick, March, 1980, p 18
More
Image
Published: 01 December 2000
Fig. 6.3 VAR furnace for melting titanium and centrifugal table for casting molten metal into the mold
More
Image
Published: 01 November 2007
Fig. 7.2 Alloy 800H recuperator suffering severe sulfidation attack in a nonferrous metal scrap melting furnace. The 9.5 mm (0.4 in) thick recuperator was perforated in less than 2 years at metal temperatures of about 650 to 760 °C (1200 to 1400 °F). (a) General view of a corroded sample. (b
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220085
EISBN: 978-1-62708-341-6
... temperature, and so forth. The major applications of induction technology include through heating, surface heating (for surface heat treatment), metal melting, welding, brazing, and soldering. This chapter summarizes the selection of equipment and related design considerations for these applications...
Abstract
The detailed heating requirements for specific applications must be considered before construction and implementation of any induction heating process. These requirements may include considerations such as type of heating, throughput and heating time, workpiece material, peak temperature, and so forth. The major applications of induction technology include through heating, surface heating (for surface heat treatment), metal melting, welding, brazing, and soldering. This chapter summarizes the selection of equipment and related design considerations for these applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
.... Casting production begins with melting of the metal (left side of Fig. 1 ). Molten metal is then tapped from the melting furnace into a ladle for pouring into the mold cavity, where it is allowed to solidify within the space defined by the sand mold and cores. After it has solidified, the casting...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.