Skip Nav Destination
Close Modal
Search Results for
materials handling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 508 Search Results for
materials handling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220253
EISBN: 978-1-62708-341-6
... manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating...
Abstract
Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating, bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems.
Image
Published: 01 June 1988
Fig. 10.1 Material-handling arrangements involving a fixed coil and moving parts. (a) Continuous movement through a channel-type coil. (b) Periodic movement through a solenoid coil. (c) Continuous movement under a pancake coil. From H. U. Erston and J. F. Libsch, Lepel Review , Vol 1, No. 16
More
Image
Published: 01 June 1988
Fig. 10.5 Typical methods of material handling in automated induction heating operations Source: TOCCO Brochure DB-2032-8-80, Ferro Corp.
More
Image
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220143
EISBN: 978-1-62708-341-6
... Abstract This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional...
Abstract
This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional controllers and heat-regulating devices. Integration of control functions is illustrated with examples related to heating of steel slabs, surface hardening of steel parts, vacuum induction melting for casting operations, and process optimization for electric-demand control. Distributed control within larger manufacturing systems is discussed. The chapter also covers nondestructive techniques for process control and methods for process simulation.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780141
EISBN: 978-1-62708-268-6
... the packaging material to the product. This may occur, for example, with paper-based, cloth-based, or expanded foam packaging materials. In many cases, packaging materials are reused. This can transfer contaminants from the products previously contained to the products currently contained. Materials handling...
Abstract
Contaminants can be a cause of numerous types of system failures. There are numerous techniques for confirming contaminant presence. When the presence of a contaminant is suspected, the failure analysis team must find and eliminate the contaminant source, which can be obvious or quite subtle. This chapter summarizes a few commonly encountered contaminant sources to stimulate the reader's thinking about potential contaminant sources. A case study of titanium component washing at Litton Lasers is presented to illustrate how the presence of contaminants leads to a system failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040001
EISBN: 978-1-62708-300-3
... and cooling techniques, material handling, die design, and forming equipment [ Altan et al., 1983 ] The development in forming technology has increased the range of shapes, sizes, and properties of the formed products enabling them to have various design and performance requirements. Formed parts...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400001
EISBN: 978-1-62708-316-4
... processes based on initial material temperature does not contribute a great deal to the understanding and improvement of these processes. In fact, tool design, machinery, automation, part handling, and lubrication concepts can be best considered by means of a classification based not on temperature...
Abstract
This chapter provides an introduction to metal forming processes and where they fit among the five general areas of manufacturing. It also discusses the basic differences between bulk deformation and sheet-metal forming processes and how they relate to hybrid forming processes such as drawing, bending, and coining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320011
EISBN: 978-1-62708-332-4
... , “ Engineering Carbon and Alloy Steel Castings ,” in this book for discussion about knocking off neck-down feeders.) Cleaned, de-gated, ground, and approved castings are moved to the machine shop. 3.6.5 Material-Handling Methods Handling methods for charge materials, molten metal, patterns, sand (raw...
Abstract
Most iron and steel castings are produced by casting into sand molds. Sand cores are needed primarily to form hollow cavities in castings for collapsibility and ease of cleaning. This chapter begins with an overview of the classification of molding and core-making systems. This is followed by a section discussing the process involved in shell molding, along with its applications. A brief description of the special casting processes is then presented. Next, the chapter discusses the processes involved in core making. Further, it provides an overview of casting manufacturing. Finally, the chapter provides information on the factors that influence a casting facility layout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050215
EISBN: 978-1-62708-311-9
... Abstract This chapters discusses the considerations involved in the qualification and analysis of induction hardening treatments. The discussion covers material selection and prior heat treatment, hardness and case depth, frequency selection, power density and heating time, part and process...
Abstract
This chapters discusses the considerations involved in the qualification and analysis of induction hardening treatments. The discussion covers material selection and prior heat treatment, hardness and case depth, frequency selection, power density and heating time, part and process tolerances, geometrical effects, quenchant selection, coil design, and work-handling equipment. The chapter also presents several examples, walking readers though each step, and discusses the development of setup instructions and operating procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430351
EISBN: 978-1-62708-253-2
... Abstract Boiler tube failures associated with material defects are often the result of poor quality control, whether in primary production, on-site fabrication, storage and handling, or installation. This chapter examines quality-related failures stemming from compositional and structural...
Abstract
Boiler tube failures associated with material defects are often the result of poor quality control, whether in primary production, on-site fabrication, storage and handling, or installation. This chapter examines quality-related failures stemming from compositional and structural defects, forming and welding defects, design defects, improper cleaning methods, and ineffective maintenance. It also includes case studies and illustrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320063
EISBN: 978-1-62708-332-4
... Abstract The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include...
Abstract
The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include recommending locator positioning; advising about lugs, hooks, or holes for casting handling through all processes; determining the choice of a parting plane and pouring orientation; designing cores for accurate positioning, suitable venting, and proper cleaning; guiding decisions about wall thicknesses and junctions; making suggestions about casting design to eliminate distortion; optimizing the gating design for slag-free metal; and establishing the feeding techniques to eliminate shrink porosity. This chapter provides the guidelines for these responsibilities. In addition, the guidelines for the use of chaplets and chills in cast iron castings; guidelines for drafts, machine stock, tolerances, and contraction or shrink rule; and guidelines for pattern layouts and nesting are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
... and cures. It also provides recommendations for handling specific materials and addresses safety concerns. light microscopy metallographic sectioning specimen preparation 2-1 Introduction The preparation steps for light microscopy, often viewed as a tedious, frustrating process, are of great...
Abstract
This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes and cures. It also provides recommendations for handling specific materials and addresses safety concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350195
EISBN: 978-1-62708-315-7
... A part under light mechanical load but which handles, rubs, or slides against an abrasive product, for example, paper, filled plastics, textile yarns, leather, friction materials for clutches and brakes, pharmaceuticals, and some foodstuffs like wheat and soy A part under high mechanical load...
Abstract
This chapter provides helpful guidelines for selecting a surface treatment for a given application. It identifies important design factors and applicable treatments for common design scenarios, materials, and operating conditions. It explains why heat treatments and finishing operations may be required before or after processing and how to estimate or predict coating thickness, case depth, hardness, and the likelihood of distortion. It also addresses related issues and considerations such as part handling and fixturing, surface preparation and cleaning requirements, processability, aesthetics, and the influence of design features.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110603
EISBN: 978-1-62708-247-1
... material characterization techniques such as XRF spectroscopy. Types of Parts Used to Create Counterfeits Table 1 Types of Parts Used to Create Counterfeits Types of parts Sources and attributes Excess inventories Sources: OEMs 4 , Contract manufacturers Attributes: handling...
Abstract
Most of the counterfeit parts detected in the electronics industry are either novel or surplus parts or salvaged scrap parts. This article begins by discussing the type of parts used to create counterfeits. It discusses the three most commonly used methods used by counterfeiters to create counterfeits. These include relabeling, refurbishing, and repackaging. The article presents a systematic inspection methodology that can be applied for detecting signs of possible part modifications. The methodology consists of external visual inspection, marking permanency tests, and X-ray inspection followed by material evaluation and characterization. These processes are typically followed by evaluation of the packages to identify defects, degradations, and failure mechanisms that are caused by the processes (e.g., cleaning, solder dipping of leads, reballing) used in creating counterfeit parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410001
EISBN: 978-1-62708-280-8
... and Iron The automobile industry has benefited significantly from the conversion of steel and iron parts to aluminum. Vehicle weights have been lessened and ride, handling, and performance have improved. Pollution has decreased, emission goals have been achieved, and material recycling has increased...
Abstract
Casting is one of the most economical manufacturing processes for providing shape to components of machinery and is used in a wide range of industries. This chapter is a brief account of the advantages, applications, limitations, and market growth of aluminum casting. It also provides information on the process of conversion of steel and iron parts to aluminum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... Vinyl ester and polyester High-temperature—polyimide (a) Low-moderate temperature—epoxy Toughness—toughened epoxy Composite material forms Cost (material and labor), process compatibility, fiber volume control, material handling, fiber wet-out, material scrap Base form—neat resin/Rovings Prepreg...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220077
EISBN: 978-1-62708-341-6
.... These include systems for cooling the power supply and induction coil, power-timing devices, temperature-control devices, and materials-handling systems. The first two types of equipment are discussed in this chapter. Temperature monitoring and control are addressed in Chapter 7 , and materials-handling...
Abstract
This chapter describes two types of auxiliary equipment required in most induction heating installations: cooling systems and device timers. Water- and vapor-based systems used for cooling the power supply and the induction coil are described. The chapter concludes with a brief discussion of timers, with emphasis on open-loop timing systems.
Image
Published: 01 December 2015
Fig. 6 Erosion of a rotary valve handling dust from a cyclone. The wear plates in the valve show some material loss, but the major damage is to the casing. Gaps between the casing and the valve allowed leakage of high-velocity air with entrained dust.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200144
EISBN: 978-1-62708-354-6
... to elimination of flange turning, facing and drilling operations. Also, material handling in the machine shop was lowered due to shorter routing of castings received. Redesign for Reduced Cost and Improved Integrity The 380-lb (173 kg) conveyor belt pulley in Figure 10-18 was originally designed...
Abstract
Parts of machines and equipment that have previously been designed as wrought or fabricated parts, or as cast parts of metals other than steel, are often reconsidered as steel castings. This chapter presents bending test data for several junction designs of L and box sections and discusses redesign from fabrication, forgings, and cast iron. The chapter also includes the benefits of redesign.
1