Skip Nav Destination
Close Modal
Search Results for
mass characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 429 Search Results for
mass characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780159
EISBN: 978-1-62708-281-5
... combustion has begun, the process has reached fully developed burning, and extinguishment becomes more important than inhibition. At this stage the most important material characteristic is the heat of combustion (the heat released by the combustion of a unit mass). Propagation will occur if sufficient...
Abstract
This article describes the basic approaches to improving the fire resistance of a polymeric material, considers the burning process on a microscale and macroscale, and discusses various test methods for determining the flammability characteristics of polymeric materials. Test methods are classified in two ways: by fire response characteristics and by particular applications of polymeric materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
... Abstract This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area...
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780093
EISBN: 978-1-62708-268-6
... and environmental approaches, and chemical and composition analysis for assessing material characteristics. This chapter is a detailed account of the working principle and the steps involved in these techniques and technologies. analytical equipment chemical analysis composition analysis dimensional...
Abstract
After the fault-tree, a failure-cause identification method has identified potential failure causes and the failure analysis team has prepared a failure mode assessment and assignment (FMA&A). The team knows specifically what to search for when examining components and subassemblies from the failed system. There are numerous techniques and technologies available for examining and analyzing components and subassemblies, which are categorized as follows: optical approaches, dimensional inspection and related approaches, nondestructive test approaches, mechanical and environmental approaches, and chemical and composition analysis for assessing material characteristics. This chapter is a detailed account of the working principle and the steps involved in these techniques and technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720139
EISBN: 978-1-62708-305-8
... by electronic transitions and accompanying characteristic x-ray emission. Source: Ref 1 The net result is that each element has a unique set of known electron energy levels. Similarly, the set of energy differences between these electron energy levels are also unique for each element and constitutes...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by x-ray fluorescence (XRF) and optical emission spectroscopy (OES). High-temperature combustion and inert gas fusion methods are typically used to analyze dissolved gases (oxygen, nitrogen, and hydrogen) and, in some cases, carbon and sulfur in metals. This chapter discusses the operating principles of XRF, OES, combustion and inert gas fusion analysis, surface analysis, and scanning auger microprobe analysis. The details of equipment set-up used for chemical composition analysis as well as the capabilities of related techniques of these methods are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780336
EISBN: 978-1-62708-281-5
... of structural characteristics and mass (total carbon) of a material, as carbon dioxide and water-soluble components are formed. These changes are frequently accompanied by discoloration resulting from extensive growth of pigmented microorganisms. However, discoloration and visible microorganism growth may occur...
Abstract
This article provides a review of the biodegradation mechanisms of plastics, presents the definitions, and describes the means of measurement of biodegradation and biodeterioration. Various experimental examples of microbial degradation, namely fungal attack in cellophane and amylose films, starch-based polyethylene films, films with modified starch additives, poly(3-hydroxybutyrate-valerate)-biodegradable plastic, and biodisintegration and biodegradation studies of plastic-starch blends, are also presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230001
EISBN: 978-1-62708-298-3
.... It also has excellent thermal properties, low atomic mass, a small x-ray absorption cross section, and a large neutron scattering cross section. This brief introductory chapter provides an overview of the unique qualities of beryllium along with typical applications and uses. beryllium physical...
Abstract
Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys. It also has excellent thermal properties, low atomic mass, a small x-ray absorption cross section, and a large neutron scattering cross section. This brief introductory chapter provides an overview of the unique qualities of beryllium along with typical applications and uses.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050139
EISBN: 978-1-62708-311-9
... Abstract This chapter discusses the quenching process and its adaptation to induction heat treating. It describes the three stages of quenching, the cooling characteristics of various types of quenchants, and the details of nearly a dozen compatible quenching methods. It also explains how...
Abstract
This chapter discusses the quenching process and its adaptation to induction heat treating. It describes the three stages of quenching, the cooling characteristics of various types of quenchants, and the details of nearly a dozen compatible quenching methods. It also explains how to verify whether a quenchant can cool a workpiece fast enough to achieve martensitic transformation without cracking or distortion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
... for Porosity in Gold Coatings on Metal Substrates by Paper Electrography • B 808, Test Method for Monitoring of Atmospheric Corrosion Chambers by Quartz Crystal Microbalances • B 810, Test Method for Calibration of Atmospheric Corrosion Test Chambers by Change in Mass of Copper Coupons • B 825...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.9781627083324
EISBN: 978-1-62708-332-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320305
EISBN: 978-1-62708-332-4
... and applications of gray and alloyed cast iron 13.1.2 Malleable Iron Malleable iron fills a niche for applications that call for unique characteristics. The ability to form high-integrity threads and the capability for coining and cold-forming are exclusive to malleable iron. Pole line hardware for high...
Abstract
Iron and steel have been the most useful materials to meet the needs of several industries for many decades. Each iron and steel alloy offers unique attributes that make them the best choice for an application. This chapter provides an overview of each ferrous alloy—gray iron, malleable iron, compacted graphite iron (CGI), ductile iron, austempered ductile iron (ADI), and carbon steel and low-alloy steel; its versatile attributes; and its individual applications. A large section of the chapter covers the impact of electric vehicles on the future of the iron and steel castings industry, including discussion on electric vehicle categories and weights; impact of center of gravity on stability and steering; lightweighting incentives; and engineering for improved suspension.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630101
EISBN: 978-1-62708-270-9
... nature of the fracture features. This chapter is a detailed account of the general characteristics and microstructural aspects of ductile fracture with suitable illustrations. It describes some of the complicating factors extraneous to the fracture itself. ductile fracture microstructure...
Abstract
Ductile fracture results from the application of an excessive stress to a metal that has the ability to deform permanently, or plastically, prior to fracture. Careful examination and knowledge of the metal, its thermal history, and its hardness are important in determining the correct nature of the fracture features. This chapter is a detailed account of the general characteristics and microstructural aspects of ductile fracture with suitable illustrations. It describes some of the complicating factors extraneous to the fracture itself.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... Abstract This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
..., the samples must have a very large mass (more than 30 kg at half power of impact), because otherwise the samples would stretch or become springy during the impact, which would cause an undersized indentation and thus simulate too large a hardness. The shear force hardness tester according to Ernst...
Abstract
In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms of plastic behavior. This chapter describes the most important and widespread dynamic hardness testing methods. These tests fall into two categories: methods in which the deformation is measured and methods in which the energy is measured. Methods that measure deformation include the Poldi hammer method, the shearing force method, the Baumann hammer method, and the Dynatest method. Methods that measure energy include the Shore method, the Leeb method, and the Nitronic method. The chapter concludes with a discussion of applications of dynamic hardness testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... Processability information Finishing characteristics Weldability/joining technologies Suitability for forging, extrusion, and rolling Formability (finished product) Castability Repairability Flammability Joining technology applicable Fusion Adhesive bonding Fasteners...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.9781627082808
EISBN: 978-1-62708-280-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220001
EISBN: 978-1-62708-259-4
... in a polycrystalline material, their size and shape, as well as the amount of each phase that might be present in the material are the characteristics normally occurring in the range of dimensions conventionally referred to as microstructural (μm scale). The mass production of steel at rates compatible...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220101
EISBN: 978-1-62708-259-4
...: Cold Working,” in this book) are examples of applications in which the pearlitic structure is still one of the best solutions. The constituent received this name due to the aspect of etched samples of eutectoid pearlitic steels. These samples, normally etched with nital, have the characteristic...
Abstract
This chapter describes the phases and constituents present in iron-carbon steels in near-equilibrium conditions. It explains how to use phase diagrams to predict and manage the development of ferrite, austenite, cementite, and pearlite through controlled cooling. It discusses the transformations, grain structure, and properties associated with each phase and identifies the primary stabilizing elements. It includes several micrographs revealing various microstructural features and describes the processing route by which they were achieved. It explains how to estimate the volume fraction of iron-carbon phases in equilibrium and how to determine the amount of each phase that must be present to reach a desired composition. The chapter also discusses the phases associated with hypo- and hyper-eutectoid steels and presents more than a dozen micrographs, identifying important structural features along with cooling conditions and sample preparation procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320063
EISBN: 978-1-62708-332-4
... Abstract The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include...
Abstract
The casting engineer contributes to a successful component design by offering expertise in molding, core making, and material characteristics and by recommending the most suitable casting process to use to meet quality and cost targets. The casting engineer's responsibilities include recommending locator positioning; advising about lugs, hooks, or holes for casting handling through all processes; determining the choice of a parting plane and pouring orientation; designing cores for accurate positioning, suitable venting, and proper cleaning; guiding decisions about wall thicknesses and junctions; making suggestions about casting design to eliminate distortion; optimizing the gating design for slag-free metal; and establishing the feeding techniques to eliminate shrink porosity. This chapter provides the guidelines for these responsibilities. In addition, the guidelines for the use of chaplets and chills in cast iron castings; guidelines for drafts, machine stock, tolerances, and contraction or shrink rule; and guidelines for pattern layouts and nesting are also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400001
EISBN: 978-1-62708-316-4
..., such as welding, brazing, and soldering, form a permanent and robust joint between components. Mechanical joining processes, such as riveting and mechanical assembly, bring two or more parts together to build a subassembly that can be disassembled conveniently. 1.2 Characteristics of Manufacturing Processes...
Abstract
This chapter provides an introduction to metal forming processes and where they fit among the five general areas of manufacturing. It also discusses the basic differences between bulk deformation and sheet-metal forming processes and how they relate to hybrid forming processes such as drawing, bending, and coining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140047
EISBN: 978-1-62708-335-5
... are sufficiently high that hydrogen is rejected at the solidification front, resulting in supercritical saturation and bubble formation. Secondary (micron-size) porosity occurs when dissolved hydrogen contents are low, and void formation occurs at characteristically subcritical hydrogen concentrations...
Abstract
Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects. Nonmetallic inclusions entrained before solidification influence porosity formation and mechanical properties. This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum.
1