1-20 of 294 Search Results for

martensitic precipitation hardening stainless steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2015
Fig. 23.27 Solution-treated and aged microstructure of martensitic precipitation-hardening stainless steel PH 13-8 Mo. Etched in Fry’s reagent. Light micrograph. Courtesy of G. Vander Voort, Carpenter Technology Corp., Reading, PA More
Image
Published: 01 March 2002
Fig. 8.42 Lath martensite in a precipitation-hardening stainless steel (Custom 630). Kalling’s reagent #2. 200× More
Image
Published: 01 March 2002
Fig. 8.43 Lath martensite in a precipitation-hardening stainless steel (Custom 630). Fry’s reagent. 250× More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310137
EISBN: 978-1-62708-286-0
... Abstract This chapter discusses the composition, alloying characteristics, mechanical properties, corrosion resistance, advantages, limitations, and applications of martensitic, semiaustenitic, and austenitic precipitation-hardenable stainless steels. mechanical properties corrosion...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410579
EISBN: 978-1-62708-265-5
... detrimental to corrosion resistance or toughness. In austenitic stainless steels, strength is also developed by cold work and strain-induced martensite formation. Martensitic stainless steels can be heat treated by quench and tempering to high hardness and strength. Precipitation-hardening grades of stainless...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790185
EISBN: 978-1-62708-356-0
... are semiaustenitic, and alloy A286 is austenitic ( Fig. 43 ). The alloys are used primarily for forgings and fasteners for aerospace and military applications. Fig. 43 Microstructure of precipitation-hardening (PH) stainless steels. (a) Martensitic PH stainless steel type 15-5 PH (UNS number S15500...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240433
EISBN: 978-1-62708-251-8
... Abstract This chapter discusses the classification, composition, properties, and applications of five types of stainless steels: austenitic, ferritic, duplex, martensitic, and precipitation-hardening steels. It discusses the process involved in argon oxygen decarburization that is used...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... intermetallic phases is also covered. In addition, the chapter provides information on carbides, nitrides, precipitation hardening, and inclusions. stainless steel thermodynamics ferrite austenite martensite intermetallic phase carbides nitrides precipitation hardening inclusions Summary...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220551
EISBN: 978-1-62708-259-4
... stainless steel duplex stainless steel ferritic stainless steel intergranular corrosion martensitic stainless steel microstructure precipitation hardening stainless steel Steels with chromium contents above 12% show high resistance to oxidation and corrosion and are generally designated...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140133
EISBN: 978-1-62708-264-8
... Abstract Stainless steels derive their name from their corrosion-resisting properties first observed in 1912. Two groups, working independently, concurrently discovered what came to be known as austenitic and ferritic stainless steels. Martensitic and precipitation-hardened stainless steels...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310123
EISBN: 978-1-62708-286-0
..., and niobium are also added at times for specific purposes explained in this chapter. Those martensitic stainless steels in which elements such as copper and titanium are added to produce additional hardening through precipitation are discussed in Chapter 4, “Corrosion Types.” The designers and engineers...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310161
EISBN: 978-1-62708-286-0
... Abstract This chapter discusses different thermal processes applicable to the various alloy groups of stainless steels, namely austenitic, ferritic, martensitic, precipitation hardening, and duplex stainless steels. The processes discussed include soaking, annealing, stress relieving...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440175
EISBN: 978-1-62708-262-4
... groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be maintained for processing of stainless steels. chemical composition corrosion resistance heat treatment...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700023
EISBN: 978-1-62708-279-2
... Precipitation-hardening stainless steels contain chromium and nickel and may be either austenitic or martensitic in the annealed condition. They develop high strength during heat treatment by utilizing precipitation hardening rather than phase transformation. Originally developed for aerospace applications...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430027
EISBN: 978-1-62708-253-2
... with boron, increases the effectiveness of the boron in increasing the hardenability of steel. Niobium Niobium is also a strong carbide former. Niobium plays a role similar to titanium in making stainless steel immune to chromium carbide precipitation and resultant intergranular corrosion. Niobium...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310233
EISBN: 978-1-62708-326-3
.... Finally, some special considerations for stainless steel castings are discussed. austenitic stainless steel composition duplex stainless steel ferritic stainless steel heat treatment martensitic stainless steel precipitation-hardening stainless steel wrought stainless steel STAINLESS...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems. austenitic...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730069
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses ferrous metals, including low-carbon steels, stainless steels, and cast irons. It also provides information on hardening and hardenability and the tempering process. hardening tempering ferrous metals hardenability Jominy end-quench testing WHILE...
Image
Published: 01 June 2010
Fig. 43 Microstructure of precipitation-hardening (PH) stainless steels. (a) Martensitic PH stainless steel type 15-5 PH (UNS number S15500) in solution-treated and aged condition. (b) Semiaustenitic PH stainless steel type 17-7 PH (UNS number S17700) in solution-treated and aged condition. (c More
Image
Published: 01 December 2008
Fig. 2 Typical microstructures of precipitation-hardenable (PH) stainless steels: (a) 15-5PH as-quenched martensite; (b) 13-8 PH solution treated and aged displaying fine martensite; (c) 17-7 PH displaying ferrite stringers in a martensite matrix; (d) 17-7 PH showing residual ferrite stringers More