Skip Nav Destination
Close Modal
Search Results for
martensitic high alloy steel casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 401 Search Results for
martensitic high alloy steel casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200311
EISBN: 978-1-62708-354-6
... high alloy steels. austenitic high alloy steel casting cryogenic steel casting ferritic carbon steel casting low-temperature steel casting martensitic high alloy steel casting martensitic low alloy steel casting Opening image for Chapter 23, “Low-Temperature and Cryogenic Steels...
Abstract
This chapter defines low-temperature and cryogenic steels and describes their alloy classifications and their ambient and low-temperature properties. These steels include ferritic carbon and low alloy steels, martensitic low alloy steels, martensitic high alloy steels, and austenitic high alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730069
EISBN: 978-1-62708-283-9
... enough carbon so that when heated they transform to austenite. The hardenability is so high that they form martensite even with slow cooling. Applications include razor and knife blades. Cast Irons Cast irons contain far more carbon than steel. Typical carbon contents range from 2 to 4% C with 1...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200274
EISBN: 978-1-62708-354-6
... Abstract This chapter describes the definitions, designation, chemical composition, room-temperature properties, elevated-temperature properties, and corrosion resistance of cast high alloy steels and stainless steels. In addition, the corrosion resistance of cast corrosion-resistant alloys...
Abstract
This chapter describes the definitions, designation, chemical composition, room-temperature properties, elevated-temperature properties, and corrosion resistance of cast high alloy steels and stainless steels. In addition, the corrosion resistance of cast corrosion-resistant alloys is also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems. austenitic...
Abstract
Steels that resist corrosive attack from normal atmospheric exposure and contain a minimum of 10.5% Cr and 50% Fe are generally classified as stainless steels. Their special qualities lie in a chromium-rich oxide surface film that quickly regrows when damaged. This chapter discusses the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400001
EISBN: 978-1-62708-258-7
... temper embrittlement. Forms an undesirable iron phosphide (Fe 3 P) at high phosphorus levels (especially in cast irons) Sulfur (S) Usually considered an impurity in steel. Added to special steels for improved machinability Silicon (Si) An essential alloying element in most steels. Added...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400023
EISBN: 978-1-62708-258-7
... slow cooling from this reaction. In fact, many steels and cast irons contain pearlite in their microstructure. An iron-carbon alloy containing 0.77% C is a pure eutectoid alloy; that is, it transforms to 100% pearlite. An example of a microstructure consisting of 100% pearlite is shown in Fig. 2.1...
Abstract
This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment (as in steels) and solidification (as in cast irons). The chapter describes how the development of the iron-carbon phase diagram, coupled with the understanding of the kinetics of phase transformations through the use of isothermal transformation diagram, were breakthroughs in the advancement of ferrous physical metallurgy. Several examples of the morphological features of microstructural constituents in steels are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
... in quench hardened and tempered to 30–32 HRC. They have a structure of tempered martensite and exhibit high toughness at this heat treat condition. The carburizing steels have a macrostructure of ferrite and pearlite with alloy elements in solid solution in the ferrite. Carburized, hardened, and tempered...
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310123
EISBN: 978-1-62708-286-0
... It can be seen that the elements that promote austenite, with the exception of cobalt, all depress the M s temperature. This puts a limit on the amount of total alloy that can be used and in the end puts an upper limit on the ability of martensitic stainless steels to achieve high corrosion resistance...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240433
EISBN: 978-1-62708-251-8
... be annealed by either process annealing or full annealing to obtain maximum ductility and machinability. However, martensitic stainless steels are typically heat treated by quenching and tempering to yield strength levels as high as 1965 MPa (285 ksi), depending on the carbon content. The lower-carbon alloys...
Abstract
This chapter discusses the classification, composition, properties, and applications of five types of stainless steels: austenitic, ferritic, duplex, martensitic, and precipitation-hardening steels. It discusses the process involved in argon oxygen decarburization that is used to refine stainless steel. The chapter also provides information on the classification and composition of stainless steel castings. It concludes with a brief description of the Schaeffler constitution diagram which is useful in predicting the type of stainless steel as a function of its alloy content.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400049
EISBN: 978-1-62708-258-7
... with alloying.) Fig. 3.8 Microstructure of a quenched AISI/SAE 8630 steel bar consisting of lath martensite. 2% nital etch. (a) 500× and (b) 1500× Martensite is certainly one way to achieve high hardness in steel. Razor blades are an example of a product having an as-quenched martensitic...
Abstract
Microstructures can be altered intentionally or unintentionally. In some cases, metallographers must diagnose what may have happened to the steel or cast iron based on the microstructural details. This chapter discusses how microstructure in steels and cast irons can be intentionally altered during heat treatment, solidification, and deformation (hot and cold working). Some specific examples are then shown to illustrate what can go wrong through unintentional changes in microstructure, for example, the loss of carbon from the surface of the steel by the process known as decarburization or the buildup of brittle carbides on the grain boundaries of an austenitic stainless steel by the process known as sensitization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170234
EISBN: 978-1-62708-297-6
... to that of the martensite matrix and cause little distortion of the matrix. This characteristic, together with the absence of carbon, allows the steel to be age hardened to very high strength levels while minimizing changes in the shape of the part being hardened. Effects of Alloying on Properties Mechanical...
Abstract
This article discusses the effects of alloying on the properties and behaviors of maraging steels. It describes how maraging steels differ from conventional steels in that they are strengthened, not by carbon, but by the precipitation of intermetallic compounds. It explains how maraging steels typically have high levels of nickel, cobalt, and molybdenum with little carbon content and how that affects their dimensional stability, fracture toughness, weldability, and resistance to stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200327
EISBN: 978-1-62708-354-6
... Abstract This chapter describes the processes involved in heat treatment of carbon and low alloy steel, high strength low alloy steels, austenitic manganese steels, martensitic stainless steels, and austenitic stainless steels. In addition, precipitation hardening and quench hardening of carbon...
Abstract
This chapter describes the processes involved in heat treatment of carbon and low alloy steel, high strength low alloy steels, austenitic manganese steels, martensitic stainless steels, and austenitic stainless steels. In addition, precipitation hardening and quench hardening of carbon steel is also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060247
EISBN: 978-1-62708-261-7
... and cementite. Heat treatment and alloying also can develop a martensitic or austenitic matrix, respectively, much like that in steels. As in steel, the five basic matrix structures in cast iron include: ferrite, pearlite, bainite, martensite, and austenite. Thus, cast irons can develop very complex variations...
Abstract
The commercial relevance of cast irons is best understood in the context of the iron-carbon phase diagram, where their composition places them near the eutectic point, which sheds light on why they melt at lower temperatures than steel and why they can be cast into more intricate shapes. This chapter examines these unique properties and how they are derived. It begins by describing the basic metallurgy of cast iron, focusing on the eutectic reaction. It explains how to control the reaction and thus properties of cast iron by overcooling and inoculation. The chapter also discusses composition, microstructure, heat treatments, and the classification and casting characteristics of white, gray, ductile, malleable, compacted graphite, and special cast irons.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410579
EISBN: 978-1-62708-265-5
..., alloy carbides, which contribute substantially to creep resistance, are an important component of the microstructure of the cast austenitic high-temperature alloys. The heat-resistant austenitic stainless steels are used at temperatures as high as 1100 °C (2012 °F), sometimes in very aggressive gaseous...
Abstract
Stainless steels derive their name from their exceptional corrosion resistance, which is attributed to their finely tuned compositions. This chapter discusses the alloying elements used in stainless steels and the some of the processing challenges they present. One of the biggest challenges is that stainless steels cannot be hardened by heat treatment. As a result, they are highly sensitive to processing-induced defects and the formation of detrimental phases. The chapter explains how alloy design, phase equilibria, microstructure, and thermomechanical processing can be concurrently optimized to produce high-quality austenitic, ferritic, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900219
EISBN: 978-1-62708-358-4
... the chromium hot-work tool steels have high hardenability, their hardenability is insufficient to produce fully martensitic structures in the heavy dies used for casting of aluminum and other metals. Schmidt ( Ref 6 ) has studied the effects on microstructure and properties of H13 steel of extremes in cooling...
Abstract
Steels for hot-work applications, designated as group H steels in the AISI classification system, have the capacity to resist softening during long or repeated exposures to high temperatures needed to hot work or die cast other materials. These steels are subdivided into three classes according to the alloying approach: chromium hot-work steels, tungsten hot-work steels, and molybdenum hot-work steels. This chapter discusses the composition, characteristics, applications, advantages, and disadvantages of each of these steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440001
EISBN: 978-1-62708-262-4
... the range of 815 to 870 °C (1500 to 1600 °F). Stainless and high-alloy steels may be quenched to minimize the presence of grain-boundary carbides or to improve the ferrite distribution, but most steels, including carbon, low-alloy, and tool steels, are quenched to produce controlled amounts of martensite...
Abstract
This chapter introduces the principal heat treating processes, namely normalizing, annealing, stress relieving, surface hardening, quenching, and tempering. An overview of four of the more popular surface hardening treatments, namely carburizing, carbonitriding, nitriding, and nitrocarburizing, is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350087
EISBN: 978-1-62708-315-7
... suitable materials for EB hardening are the same steels used in flame hardening ( Ref 2 ): 1045 to 1080 carbon steels Medium- to high-carbon alloy steels (4140, 4340, 8645, 52100, etc.) Pearlitic matrix cast irons W1, W2, O1, O2, L2, L6, S1, S2 tool steels There are two basic types...
Abstract
This chapter discusses surface engineering treatments, including flame hardening, induction hardening, high-energy beam hardening, laser melting, and shot peening. It describes the basic implementation of each method, the materials for which they are suited, and their effect on surface metallurgy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220551
EISBN: 978-1-62708-259-4
... corresponding to the most common stainless steel families are indicated. 16.2 Martensitic Stainless Steels Martensitic stainless steels may be considered in some aspects equivalent to engineering steels for quenching and tempering (carbon or alloy steels). The main difference is evidently the high...
Abstract
Steels with chromium contents above 12% show high resistance to oxidation and corrosion and are generally designated as stainless steels. This chapter discusses the compositions, microstructures, heat treatments, and properties of martensitic, ferritic, austenitic, ferritic-austenitic (duplex), and precipitation hardening stainless steels. It also describes solidification sequences and explains how chromium carbides may segregate to grain boundaries at certain temperatures, making grain boundary regions susceptible to intercrystalline or intergranular corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170107
EISBN: 978-1-62708-297-6
... to corrosion, but some reduction in abrasion resistance must be expected. Castings are normally supplied in the as-cast condition. The high-chromium irons designated for use at elevated temperatures fall into one of three categories, depending on the matrix structure: Martensitic irons alloyed with 12...
Abstract
This article discusses the production, properties, and uses of high-alloy white irons. It explains how the composition and melt are controlled to produce a large volume of eutectic carbides, making these irons particularly hard and resistant to wear, and how the metallic matrix supporting the carbide phase can be adjusted via alloy content and heat treatment to optimize the balance between abrasion resistance and impact toughness. It also describes the effect of alloying elements and inoculants on various properties and behaviors and provides information on commercial alloy grades and applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310233
EISBN: 978-1-62708-326-3
... Cu; 0.15–0.45 Nb 17-7 PH S17700 0.09 1.00 1.00 16.0–18.0 6.5–7.75 0.04 0.04 0.75–1.5 Al (a) Single values are maximum values unless otherwise indicated. (b) Optional For cast stainless steels, the High Alloy Product Group of the Steel Founders’ Society of America...
Abstract
This chapter discusses the composition and classification of stainless steels and focuses on the processes involved in heat treatment and applications of these steels. The wrought and the cast stainless steels covered are ferritic, austenitic, duplex (ferritic-austenitic), martensitic, and precipitation-hardening. In addition, information on special considerations for stainless steel castings is also provided. The heat treatment processes explained in the chapter are preheating, annealing, stress relieving, hardening, tempering, austenite conditioning, heat aging, and nitride surface hardening. Finally, some special considerations for stainless steel castings are discussed.
1