Skip Nav Destination
Close Modal
Search Results for
magnetic properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 379 Search Results for
magnetic properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860203
EISBN: 978-1-62708-348-5
...Units for magnetic properties. Table 6.1 Units for magnetic properties. Property cgs emu Conversion Factor, C a mks SI Symbol Units Symbol Units Flux density, magnetic induction B gauss (G) 10 −4 B tesla (T) b Flux ϕ maxwell (Mx) 10 −8 ϕ weber...
Abstract
This chapter provides a view of magnetism in materials used at low temperatures. The discussion covers the concepts, definitions, and systems of units that are unique to the study of magnetic properties. The chapter provides a description of some of the techniques and devices used for determining magnetic properties.
Image
in Magnetic and Physical Properties
> Powder Metallurgy Stainless Steels<subtitle>Processing, Microstructures, and Properties</subtitle>
Published: 01 June 2007
Fig. 8.5 Influence of sintered density on magnetic properties of sintered iron. B 20 , magnetic induction at H of 2000 A/m –1 (25.1 Oe); B r , remanence; H c , coercive field; μ max , maximum permeability. (One tesla, T = 10 –4 gauss). Source: Ref 5
More
Image
Published: 01 December 1995
Fig. 27-21 The effect of carbon on the magnetic properties of annealed cast carbon steel ( 19 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000131
EISBN: 978-1-62708-312-6
... Abstract This chapter discusses the advantages of using powder metallurgy to produce magnetic materials, particularly its ability to control chemistry and near-net shape. It also explains how process parameters and powder characteristics influence the physical and magnetic properties of common...
Abstract
This chapter discusses the advantages of using powder metallurgy to produce magnetic materials, particularly its ability to control chemistry and near-net shape. It also explains how process parameters and powder characteristics influence the physical and magnetic properties of common stainless steels.
Image
Published: 01 December 2008
Fig. 2.19 Thermodynamic properties of magnetic materials. (a) The changes in the heat capacity (a1), the enthalpy (a2), and the free energy (a3) of bcc Fe according to magnetic transformation. (b) Unless magnetic transition occurs, A 3 transition will not occur. (c) Is hcp Fe nonmagnetic? See
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240303
EISBN: 978-1-62708-251-8
..., thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table. physical properties electrical properties thermal properties magnetic properties optical properties metals THE PHYSICAL PROPERTIES of a material are those...
Abstract
The physical properties of a material are those properties that can be measured or characterized without the application of force and without changing material identity. This chapter discusses in detail the common physical properties of metals, namely density, electrical properties, thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170614
EISBN: 978-1-62708-297-6
... Abstract This article discusses the compositions, structures, and properties of the most common grades of soft magnetic metals and permanent magnet alloys. It explains how alloying additions and impurities affect the magnetic properties of these materials, which include commercially pure...
Abstract
This article discusses the compositions, structures, and properties of the most common grades of soft magnetic metals and permanent magnet alloys. It explains how alloying additions and impurities affect the magnetic properties of these materials, which include commercially pure and phosphorus irons, low-carbon and silicon steels, ferritic stainless steels, and nickel-iron and iron-cobalt alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200404
EISBN: 978-1-62708-354-6
... Abstract This chapter describes the physical properties of steels used for castings. The properties covered include density, modulus of elasticity, Poisson's ratio, shear modulus, thermal expansion, thermal conductivity, specific heat, thermal diffusivity, electrical resistivity, and magnetic...
Abstract
This chapter describes the physical properties of steels used for castings. The properties covered include density, modulus of elasticity, Poisson's ratio, shear modulus, thermal expansion, thermal conductivity, specific heat, thermal diffusivity, electrical resistivity, and magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050009
EISBN: 978-1-62708-311-9
... to the relationship between the physical and electrical properties of the part as it is heated through rising temperatures. These functions include the properties of heat transfer such as thermal conductivity and specific heat, and electrical and magnetic properties such as resistivity, permeability, and frequency...
Abstract
This chapter discusses the basic principles of induction heating and related engineering considerations. It describes the design and operation of induction coils, the magnitude and distribution of magnetic fields, and the forces that generate eddy currents in metals. It explains how induced electrical current causes metal to heat in proportion to their electrical resistance and how it affects temperature dependent properties such as resistivity and specific heat and, in turn, heating rates and efficiencies. It also discusses the effect of hysteresis and explains why eddy currents tend to be confined to the outer surface of the workpiece, a phenomenon known as the skin effect. The chapter includes several data plots showing how the depth of heating varies with frequency and how heating time, power density, and thermal conduction rate correspond with hardening depth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
... properties Heat resistance Toughness and cold resistance Corrosion/oxidation resistance Hardness and wear resistance Physical properties Elastic modulus Magnetic properties Electrical properties Thermal expansion properties Color Alloying for Mechanical Properties...
Abstract
This article discusses the general purpose of alloying and identifies some of the material properties and behaviors that can be improved by adding various elements to the base metal. It explains how alloying can make metals stronger and more resistant to corrosion and wear as well as easier to cast, weld, form, and machine. It also discusses some of the alloying techniques that have been developed to address problems stemming from dissimilarities between the base metal and alloying or inoculate material.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420289
EISBN: 978-1-62708-310-2
... and coercivity at room temperature but unfavorable properties at higher temperatures. Because hard magnetic properties are limited by nucleation of severed magnetic domains, the surface and interfaces of grains in the sintered and heat treated material are the controlling factor. Therefore, the effects...
Abstract
This chapter discusses the use of phase diagrams in alloy design, processing, and performance assessment. The examples cover both ferrous and nonferrous metals and a variety of goals and objectives. The chapter also identifies limitations and pitfalls associated with the use of phase diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060407
EISBN: 978-1-62708-261-7
... of properties: thermal, electrical, magnetic, optical, and the general properties of crystal structure, coefficient of friction, and density. For specialized applications, other properties such as dimensional stability, optical reflectivity, and color may be sufficiently important that they must be considered...
Abstract
This chapter addresses some of the challenges involved in materials selection, providing context for much of the information presented in the book. It describes a typical four-step design scenario, noting material-related considerations and information needs. It explains how design decisions are complicated by the interconnected nature of material properties, design geometry, and manufacturing requirements and effects. The chapter also assesses the design impact of several materials and discusses codes, standards, and specifications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720183
EISBN: 978-1-62708-305-8
... Abstract Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface...
Abstract
Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface flaw detection techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860465
EISBN: 978-1-62708-348-5
... temperature, critical magnetic field, critical current density, stability, ac loss, and mechanical characteristics; for each property, typical data are provided and the experimental methods used to measure it are briefly described. The properties of the superconducting composites are tied together...
Abstract
The chapter presents an overview of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. It introduces six properties: critical temperature, critical magnetic field, critical current density, stability, ac loss, and mechanical characteristics; for each property, typical data are provided and the experimental methods used to measure it are briefly described. The properties of the superconducting composites are tied together in the chapter to summarize their effect on superconductor material selection and the geometrical design of superconducting composites. The chapter also contains a reference guide to composite-design factors with links to the relevant chapter sections where each design consideration is addressed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... magnets for magnetic resonance imaging (MRI) machines, used in medical diagnosis. Rehnium (Re) The properties of rhenium are generally similar to those of molybdenum and tungsten. Its melting temperature of 3180 °C (5756 °F) is the second highest among the refractory metals. Pure rhenium combines...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000001
EISBN: 978-1-62708-312-6
... manufacture and the sintering processes for stainless steel parts had been improved sufficiently to qualify for the second large-volume application: antilock brake system sensor rings in cars. This application made increased demands on both corrosion resistance and magnetic properties of (ferritic) stainless...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170587
EISBN: 978-1-62708-297-6
... Effects of Nickel Content on Magnetic Properties of Invar Invar and all similar iron-nickel alloys are ferromagnetic at room temperature and become paramagnetic at higher temperatures. Because additions in nickel contents raise the temperature at which the inherent magnetism of the alloy disappears...
Abstract
This article discusses the role of alloying in the production and use of low-expansion alloys such as iron-nickel (Invar), iron-nickel-chromium (Elinvar), and iron-nickel-cobalt (Super-Invar and Kovar). It explains how the coefficient of thermal expansion varies with nickel content and how it can be tailored, along with other properties, through appropriate alloying adjustments. The article also discusses the effect of alloying on Incoloy and Pyromet, which are classified as high-strength, controlled-expansion alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860047
EISBN: 978-1-62708-348-5
... References 2.5 References Abrikosov A. A. (1957) . On the magnetic properties of superconductors of the second group. Sov. Phys. JETP (Eng. Transl.) 5 , 1174 – 1182 . Bardeen J. , Cooper L. N. , and Schreiffer J. R. (1957) . Microscopic theory of superconductivity...
Abstract
Specific heat is a fundamental property that relates the total heat per unit mass added to a system to the resultant temperature change of the system. This chapter begins with the definition and historical development of specific heat. Thermodynamic and solid state relationships are presented which include discussions about lattice specific heat and the effects of magnetic and superconducting transitions. Data sources for practical applications and methods of estimating specific heat for materials are also included. The chapter concludes with a section concerning the measurement of specific heat at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000009
EISBN: 978-1-62708-313-3
...-expansion superalloys rely on the Invar effect to achieve their low thermal expansion. In these alloys, the contraction associated with the loss of ferromagnetism on heating compensates normal thermal expansion. Thus, the expansion of the alloy is controlled by the changes in the alloy magnetic properties...
1