Skip Nav Destination
Close Modal
Search Results for
magnetic phase transition temperatures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 205 Search Results for
magnetic phase transition temperatures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320013
EISBN: 978-1-62708-357-7
... understanding of the U , S , and F of the crystal. It covers basic concepts of thermodynamics of magnetic transition and discusses the role and the meaning of magnetic transition in iron and steel. The chapter concludes with a general discussion on an amorphous phase from a thermodynamic viewpoint...
Abstract
This chapter describes the basics of energy and entropy and “free energy.” Fundamentals of internal energy U , the enthalpy H , entropy S , free energies G , and F of a substance are presented. The chapter also presents the thermal vibration model to promote a better understanding of the U , S , and F of the crystal. It covers basic concepts of thermodynamics of magnetic transition and discusses the role and the meaning of magnetic transition in iron and steel. The chapter concludes with a general discussion on an amorphous phase from a thermodynamic viewpoint.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860203
EISBN: 978-1-62708-348-5
...-5 Connolly T. F. and Copenhaver E. D. (1972) . Bibliography of Magnetic Materials and Tabulation of Magnetic Transition Temperatures . Plenum Press , New York . 10.1007/978-1-4684-1396-0 Cooper J. R. and Miljak M. (1976) . Single impurity behavior...
Abstract
This chapter provides a view of magnetism in materials used at low temperatures. The discussion covers the concepts, definitions, and systems of units that are unique to the study of magnetic properties. The chapter provides a description of some of the techniques and devices used for determining magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420239
EISBN: 978-1-62708-310-2
... of the required constituents, heat treating them at high temperatures to reach equilibria, and then identifying the phases to determine liquidus temperatures, solidus temperatures, solubility lines, and other phase transition lines. Along with equilibrated alloys, several techniques are used to determine phase...
Abstract
This chapter discusses some of the methods and measurements used to construct phase diagrams. It explains how cooling curves were widely used to determine phase boundaries, and how equilibrated alloys examined under controlled heating and cooling provide information for constructing isothermal and vertical sections as well as liquid projections. It also explains how diffusion couples provide a window into local equilibria and identifies typical phase diagram construction errors along with problems stemming from phase-boundary curvatures and congruent transformations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
.... As stated previously, some metals have different unique crystal structures and atomic diameters at different temperatures; that is, they form different stable phases at different temperatures. Examples are alpha and beta titanium and alpha and gamma iron. Some metal phases are transitional rather than...
Abstract
This article discusses the general purpose of alloying and identifies some of the material properties and behaviors that can be improved by adding various elements to the base metal. It explains how alloying can make metals stronger and more resistant to corrosion and wear as well as easier to cast, weld, form, and machine. It also discusses some of the alloying techniques that have been developed to address problems stemming from dissimilarities between the base metal and alloying or inoculate material.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860047
EISBN: 978-1-62708-348-5
... as a function of temperature for vanadium. The dashed line represents data taken at H = 0 and illustrates the second-order transition. The solid curve for normal vanadium was obtained by applying a magnetic field such that H > H C ( Corak, Goodman, Satterthwaite, and Wexler, 1956 ). Figure...
Abstract
Specific heat is a fundamental property that relates the total heat per unit mass added to a system to the resultant temperature change of the system. This chapter begins with the definition and historical development of specific heat. Thermodynamic and solid state relationships are presented which include discussions about lattice specific heat and the effects of magnetic and superconducting transitions. Data sources for practical applications and methods of estimating specific heat for materials are also included. The chapter concludes with a section concerning the measurement of specific heat at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
... Differential thermal analysis (DTA) Glass transition temperatures, T g ; melt/crystallization temperatures, T m Phase changes, T g and T m Differential scanning calorimetry (DSC) Heat of polymerization, fusion, T g , T m Phase changes, reaction kinetics degree of cross linking...
Abstract
This article introduces procedures an engineer or materials scientist can use to investigate failures. It provides a brief survey of polymer systems and key properties that need to be measured during failure analysis. The article begins with an overview of the problem-solving approach pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal analysis, namely differential thermal analysis, thermogravimetric analysis, thermal-mechanical analysis, and dynamic mechanical analysis. The following sections provide details on X-ray diffraction for analyzing crystalline phases and on a minimal scheme for polymer analysis and characterization to assist the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320197
EISBN: 978-1-62708-357-7
... The phase separation due to magnetic transition. Source: Ref 18 and 19 Appendix: Effect of the Inversion Type of Phase Separation Precipitated alloys are usually produced by aging at temperature T 3 in the two-phase region of a supersaturated solid solution rapidly cooled from temperature...
Abstract
This chapter covers the analytical methods developed to characterize ordering phenomena in crystal structures. The chapter gives examples of ordering phenomena and discusses models for long-range ordering, such as the Bragg-Williams-Gorsky (B-W-G) model, and for short-range ordering. Examples of ordering and phase separation due to ordering by the B-W-G model are described. The chapter includes an appendix covering the effect of phase separation inversion type.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240303
EISBN: 978-1-62708-251-8
..., thermal properties such as thermal expansion and specific heat capacity, magnetic properties such as magnetic permeability, and optical properties such as refractivity. Some physical properties for a number of metals are given in Table 17.1 . Physical properties of some metals at room temperature...
Abstract
The physical properties of a material are those properties that can be measured or characterized without the application of force and without changing material identity. This chapter discusses in detail the common physical properties of metals, namely density, electrical properties, thermal properties, magnetic properties, and optical properties. Some physical properties for a number of metals are given in a table.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860465
EISBN: 978-1-62708-348-5
... , Rutherford Laboratory, Chilton, Didcot , England . Soulen R. J. Jr. and Colwell J. H. ( 1971 ). The equivalence of the superconducting transition temperature of pure indium as determined by electrical resistance, magnetic susceptibility, and heat-capacity measurements . J. Low Temp...
Abstract
The chapter presents an overview of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. It introduces six properties: critical temperature, critical magnetic field, critical current density, stability, ac loss, and mechanical characteristics; for each property, typical data are provided and the experimental methods used to measure it are briefly described. The properties of the superconducting composites are tied together in the chapter to summarize their effect on superconductor material selection and the geometrical design of superconducting composites. The chapter also contains a reference guide to composite-design factors with links to the relevant chapter sections where each design consideration is addressed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860295
EISBN: 978-1-62708-348-5
... Magnetic transition (paramagnetic—antiferromagnetic, Neel temperature) Warns, King (1976) 90 –1.25 –2.75 +7.75 –14 –5.5 64 commercial and specially prepared alloys: 5–25Cr, 5–32Ni, 0–16Si, 0–24Si, 0.3Mo Enthalpies of formation b Lee, Millman, MacDougall, Keown, Argent (1977...
Abstract
This chapter concentrates on very low-temperature martensitic transformations, which are of great concern for cryogenic applications and research. The principal transformation characteristics are reviewed and then elaborated. The material classes or alloy systems that exhibit martensitic transformations at very low temperatures are discussed. In particular, the martensitic transformations and their effects in austenitic stainless steels, iron-nickel alloys, practical superconductors, alkali metals, solidified gases, and polymers are discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860163
EISBN: 978-1-62708-348-5
... Kohler plot for the transverse magnetoresistance of copper. Figure 5.17 Resistivity as a function of purity as measured in the transverse configuration at several magnetic fields for aluminum and copper. Figure 5.18 Temperature dependence of the Hall coefficient as measured...
Abstract
This chapter presents topics pertaining to resistance at cryogenic temperatures: measurement, the resistive mechanisms, and available data. The chapter also presents brief descriptions of the various mechanisms that are operative in producing resistance at low temperatures. The alloys discussed are the nondilute mixtures of metals. An introduction to low-temperature electrical properties of specific metals and alloys is included.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860001
EISBN: 978-1-62708-348-5
..., Brockhouse, March, Stewart, and Bowers (1962) Peierls force Peierls (1940) Phase stability Zener (1947) Weston and Granato (1975) Cho and Puerta (1976) Phase transitions, crystallographic Warlimont et al. (1976) Plastic properties of solids Seitz and Read (1941) Zener (1942...
Abstract
Many scientific-technological advances depend critically on solid-state elastic properties, their magnitudes, and their responses to variables like stress and temperature. This chapter provides the definitions and descriptions of elastic constants and emphasizes five aspects of engineering-material solid-state elastic constants: general properties; interrelationships; relationships, especially thermodynamic to other physical properties; changes during cooling from ambient to near-zero temperature; and near-zero-temperature behavior.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130417
EISBN: 978-1-62708-284-6
... for induction heating and quenching, the use of magnetic flux concentrators to improve the efficiency of surface heating, and the quenching systems used for induction hardening. The discussion also provides information on time-temperature dependence in induction heating, workpiece distortion in induction...
Abstract
Induction heating, in most applications, is used to selectively heat only a portion of the workpiece that requires treatment. This chapter covers the basic principles, features, and metallurgical aspects of induction heating. The discussion includes the conditions required for induction heating and quenching, the use of magnetic flux concentrators to improve the efficiency of surface heating, and the quenching systems used for induction hardening. The discussion also provides information on time-temperature dependence in induction heating, workpiece distortion in induction surface hardening, residual stresses after induction surface hardening and finish grinding, and input and output control of steel for induction surface hardening of gears.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560029
EISBN: 978-1-62708-291-4
... transition in ferrite A 3 Ferrite/austenite transition at temperatures above A 2 A 32 Ferrite/austenite transition at temperatures below A 2 A 4 Austenite/δ-ferrite transition A cm Austenite/cementite transition This terminology has been adapted to the constitutional diagram...
Abstract
This chapter describes some of the most essential tools in metallurgy and what they reveal about the structure, composition, and processing requirements of steel. It begins by identifying important details in the constitutional diagram of iron-cementite. It then explains how to read isothermal transformation and continuous-cooling diagrams and how to recognize the effect of various alloying elements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220143
EISBN: 978-1-62708-341-6
... temperature, followed by quenching. Workpiece resistance, and therefore coil impedance, varies as a result of changes in resistivity with temperature as well as with phase changes. As discussed by Verhoeven and his colleagues, three distinct stages can be identified in the process of surface austenitizing...
Abstract
This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional controllers and heat-regulating devices. Integration of control functions is illustrated with examples related to heating of steel slabs, surface hardening of steel parts, vacuum induction melting for casting operations, and process optimization for electric-demand control. Distributed control within larger manufacturing systems is discussed. The chapter also covers nondestructive techniques for process control and methods for process simulation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400245
EISBN: 978-1-62708-258-7
..., Ae4. The temperatures of phase changes at equilibrium. age hardening. Hardening by aging, usually after rapid cooling or cold working. See also aging. age softening. A decrease of strength and hardness that takes place at room temperature in certain strain-hardened alloys. aging. A change...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860515
EISBN: 978-1-62708-348-5
... temperature scales. Table 14.5 Primary fixed points of IPTS-68 and comparative values from previous International temperature scales. Fixed Point ITS-27 (°C) ITS-48 (°C) IPTS-48 (°C) IPTS-68 (°C) (K) Uncertainty (K) Equilibrium between the solid, liquid, and vapor phases of equilibrium...
Abstract
This chapter discusses three measurements parameters: temperature, strain, and magnetic field strength. It stresses the measurement of temperature because it is the primary variable in nearly all low-temperature material properties. The chapter contains information on methods and auxiliary materials. Areas of frequent concern, such as thermal contact, heat leak, thermal anchoring, thermal conductivity of greases, insulators, lead wires, ground loops, and feedthroughs are also reviewed. The chapter provides an overview and historical development of temperature scales because the practical use of all thermometers is associated with some approximation of the thermodynamic temperature scale. A short section is devoted to types of temperature measuring devices. The characteristics of commercially available resistance-type strain gauges at low temperatures are stressed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230145
EISBN: 978-1-62708-298-3
... and the zirconium-beryllium systems, the low-temperature hexagonal (alpha) phase of the transition metal has little or no equilibrium solubility of beryllium, but the high-temperature body-centered cubic (beta) phase has a solubility between 3 and 5 at.%. The zirconium-beryllium system has a glass-forming range...
Abstract
Beryllium is an important additive in the production of amorphous metal alloys, achieving low density and high strength. It also plays a role in amorphous alloys that can be slowly cooled and still retain their amorphous structure. This chapter provides information on the development of amorphous alloys that contain beryllium and the applications for which they are suited.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310029
EISBN: 978-1-62708-326-3
... an equilibrium transformation. Experimental latent-heat values at the transformation temperatures of pure iron are given in Table 2 for the phase transformations. In the case of the Curie temperature ( T C ), the additional energy needed to disorient the magnetic dipoles in iron is described by a sharp...
Abstract
The existence of austenite and ferrite, along with carbon alloying, is fundamental in the heat treatment of steel. In view of the importance of structure and its formation to heat treatment, this chapter describes the various microstructures that form in steels, the various factors that determine the formation of microstructures during heat treatment processing of steel, and some of the characteristic properties of each of the microstructures. The discussion also covers the constitution of iron during heat treatment and the phases of heat-treated steel with elaborated information on iron phase transformation, hysteresis in heating and cooling, ferrite and austenite as two crystal structures of solid iron, and the diffusion coefficient of carbon.
1