Skip Nav Destination
Close Modal
Search Results for
macrosegregation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
macrosegregation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1999
Fig. 5.22 Schematic illustrating macrosegregation in a large steel ingot
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420429
EISBN: 978-1-62708-310-2
..., there is a buildup of the solute in the liquid that freezes last, such as at the center of the casting. Such long range variations in composition are called macrosegregation. Normal segregation frequently occurs when the direction of growth is inward, as in columnar growth. An examination of the relevant portion...
Abstract
The solidification process has a major influence on the microstructure and mechanical properties of metal casting as well as wrought products. This appendix covers the fundamentals of solidification. It discusses the formation of solidification structures, the characteristics of planar, cellular, and dendritic growth, the basic freezing sequence for an alloy casting, and the variations in cooling rate, heat flow, and grain morphology in different areas of the mold. It also describes the types of segregation that occur during freezing, the effect of solidification rate on secondary dendrite arm spacing, and the factors that contribute to porosity and shrinkage.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220129
EISBN: 978-1-62708-259-4
.... continuous casting hot cracking ingot casting macrosegregation microporosity nonmetallic inclusions solidification shrinkage steel Modern steelmaking and refining processes are capable of producing large masses of highly homogeneous steel, both chemically and thermally. However, these liquid...
Abstract
Many of the structural characteristics of steel products are a result of changes that occur during solidification, particularly volume contractions and solute redistribution. This chapter discusses the solidification process and how it affects the quality and behaviors of steel. It explains how steel shrinks as it solidifies, causing issues such as pipe and voids, and how differences in the solubility of solid and liquid steel lead to compositional heterogeneities or segregation. It describes the dendritic nature of solidification, peritectic and eutectic reactions, microporosity, macro- and microsegregation, and hot cracking, as well as the effects of solidification and remelting on castings, ingots, and continuous cast products. It explains how to determine where defects originate in continuous casters and how to control alumina, sulfide, and nitride inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... of the alloy to produce a weld that is free of discontinuities or defects. Defects that may be encountered when welding titanium alloys include: Solidification segregation (macrosegregation and microsegregation) Solidification cracking Contamination cracking Hydrogen embrittlement Subsolidus...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240095
EISBN: 978-1-62708-251-8
... soluble in the liquid than the solid. As freezing progresses, there is a buildup of the solute in the liquid that freezes last, such as at the center of the casting. Such long-range variations in composition are called macrosegregation. Normal segregation frequently occurs when the direction of growth...
Abstract
Almost all metals and alloys are produced from liquids by solidification. For both castings and wrought products, the solidification process has a major influence on both the microstructure and mechanical properties of the final product. This chapter discusses the three zones that a metal cast into a mold can have: a chill zone, a zone containing columnar grains, and a center-equiaxed grain zone. Since the way in which alloys partition on freezing, it follows that all castings are segregated to different categories. The different types of segregation discussed include normal, gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative pattern casting, investment casting, permanent mold casting, and die casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230253
EISBN: 978-1-62708-298-3
... solidification, and control of cooling rates during freezing that influence the soundness of beryllium ingots. Typical defects associated with VIM include shrinkage pipe, gas porosity, microcracks, centerline defects, cold shuts, inclusions, and macrosegregation of metallic impurities. They point out...
Abstract
This chapter provides an overview of beryllium casting practices and the challenges involved. It discusses the stages of solidification, the effect of cooling rate, the difficulty of heat removal, and the potential for hot cracking. It describes common melting techniques, including vacuum induction melting, vacuum arc melting, and electron beam melting, and some of the ways they have been used to cast beryllium alloys. The chapter also includes information on metal purification and grain refinement procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... (few microns) is referred to as microsegregation, and large-scale segregation (hundreds of microns) is known as macrosegregation. Macrosegregation can occur in welds, but it is not very common. In welds, it is primarily due to a sudden change in the welding parameters and the resultant change...
Abstract
It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend on the solidification behavior and the resulting microstructural characteristics, understanding weld pool solidification behavior is essential. This article provides a general introduction of key welding variables including solidification of the weld metal or fusion zone and microstructure of the weld and heat-affected zone. It discusses the effects of welding on microstructure and the causes and remedies of common welding flaws.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720021
EISBN: 978-1-62708-305-8
... alloys freeze over a range of temperatures and liquid compositions, the various elements in the alloy segregate during the solidification of ingots and castings. Segregation occurs over short distances, causing microsegregation, and over long distances, producing macrosegregation. Microsegregation...
Abstract
Visual inspection is the most important method of inspection of materials. This chapter describes the procedures involved in visual inspection such as identification markings, identification of defects caused by heating problems, scaling of materials, cracking characterization, and measurement of material dimensions. It discusses the mechanisms, advantages, limitations, components, and applications of various visual inspection tools, namely magnifying devices, lighting for visual inspection, measuring devices, miscellaneous measuring equipment, record-keeping devices, and macroetching.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850001
EISBN: 978-1-62708-260-0
... structure with an oriented growth pattern which is essentially vertical but inclined toward the center which eliminates the central equiaxed portion of the ingot with its high inherent segregation and reduces both macrosegregation and microsegregation. Figures 1-15 and 1-16 show the macrostructures...
Abstract
This chapter describes several macroscopic examination techniques, including macroetching, contact printing, fracturing, and lead exudation. It explains how each method is implemented, why it is used, and what it reveals about manufacturing processes, defects, imperfections, and failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... parameters is required for reproducible production of homogeneous ingots with controlled solidification structures free of macrosegregation. Fig. 9 Modern vacuum arc remelting (VAR) furnace. (a) 30 ton VAR. (b) Operational components: 1, electrode feed drive; 2, furnace chamber; 3, melting power...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... and in the solid-state during continuous-cooling from peak temperatures or during postweld heat treatment. From the standpoint of weld solidification, four characteristics of significance are: The morphology of the beta grain solidification structure Macrosegregation Microsegregation Solidification...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400049
EISBN: 978-1-62708-258-7
... be in the dendrites themselves). The resulting microstructure will reveal these regions, called microsegregation and macrosegregation. Microsegregation is represented by the segregation of alloying elements between the dendrite branches or arms. Macrosegregation is considered bulk segregation that usually takes place...
Abstract
Microstructures can be altered intentionally or unintentionally. In some cases, metallographers must diagnose what may have happened to the steel or cast iron based on the microstructural details. This chapter discusses how microstructure in steels and cast irons can be intentionally altered during heat treatment, solidification, and deformation (hot and cold working). Some specific examples are then shown to illustrate what can go wrong through unintentional changes in microstructure, for example, the loss of carbon from the surface of the steel by the process known as decarburization or the buildup of brittle carbides on the grain boundaries of an austenitic stainless steel by the process known as sensitization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260187
EISBN: 978-1-62708-336-2
.... Currently, higher-standard billet quality is maintained by proper statistical process control (SPC). MMC billets are homogenized prior to extrusion, as are regular alloy billets, to reduce macrosegregation and achieve a fine distribution of matrix secondary phases. Brusethaug et al. ( Ref 24...
Abstract
This chapter discusses the extrusion characteristics of hard aluminum alloys, particularly those in the 5000 and 7000 series. It begins with a review of two studies, one showing how the extrudability of 7 xxx alloys varies with the presence and amount of different alloying elements, the other relating minimum wall thickness with circumscribing circle diameter. It then explains how oxides on either the billet or container complicate the control of extrusion as well as auxiliary processes and how material flow and the movement of trapped gasses in different regions of the extrusion can lead to defects and variations in strength. It also discusses the extrusion of aluminum matrix composites and explains how composite billets are made.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
... of the casting show differences in composition from the nominal composition of the alloy that was poured to make the casting, macrosegregation results. However, segregation also occurs between the dendrite arms (microsegregation), where solidification is taking place. Segregation has a number of effects...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000023
EISBN: 978-1-62708-312-6
... the cooling rates in water atomization are higher than those in gas atomization, both are sufficient to produce powders free of macrosegregation and which, after processing, yield homogenous microstructures. These advantages, when combined with consolidation to full density, can in some alloy systems produce...
Abstract
Stainless steel powders are usually made by water or gas atomization. This chapter describes both processes and the properties and characteristics of the powders they produce. It also discusses secondary processes, including drying, screening, annealing, and lubricating, and the effects of iron contamination on corrosion resistance.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
... several passes in a multipass weld, and it will perhaps encompass weld metal, HAZ, and base metal in a single-pass weld. An average composition over this large an area may not address local effects, for example, sensitization of stainless steel. Welds are prone to both macrosegregation...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
..., and sheet. Large plastic deformation in combination with heat is very effective in refining the microstructure, breaking up macrosegregations, collapsing and sealing porosity, and refining the grain size. This product may be suitable for its intended application, but in many cases, it provides the starting...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
... —the reduced machining costs are about offset by the higher cost of powder) Improved property uniformity and alloy-development flexibility, due to the elimination of macrosegregation and the development of finer grain size Reduced energy requirements and shorter delivery time, because the P/M process...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410163
EISBN: 978-1-62708-265-5
Abstract
Inclusions and chemical segregation are factors in many process-induced failures involving steel parts. Inclusions are nonmetallic compounds introduced during production; segregation is a type of chemical partitioning that occurs during solidification. This chapter discusses the origins of segregation and inclusions and their effect on the mechanical properties and microstructure of steel. It explains how to identify various types of inclusions and characteristic segregation patterns, such as banding. It also describes the effect of hot work processing on solidification structure and the chemical variations produced by interdendritic segregation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060175
EISBN: 978-1-62708-261-7
.... Manganese has less of a tendency toward macrosegregation than any of the common elements. Steels with more than 0.60% Mn cannot be readily rimmed. Manganese is beneficial to surface quality in all carbon ranges (with the exception of extremely low-carbon rimmed steels). Silicon Silicon is one...
Abstract
This chapter describes the classification of steels and the various compositional categories of commercial steel products. It explains how different alloying elements affect the properties of carbon and low-alloys steels and discusses strength, toughness, and corrosion resistance and how to improve them.
1