Skip Nav Destination
Close Modal
Search Results for
low-cycle thermal fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 396 Search Results for
low-cycle thermal fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
... high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation...
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490111
EISBN: 978-1-62708-340-9
..., amplitude, and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also...
Abstract
This chapter describes the phenomenological aspects of fatigue and how to assess its effect on the life of components operating in high-temperature environments. It explains how fatigue is measured and expressed and how it is affected by loading conditions (stress cycles, amplitude, and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates the use of tools and techniques that have been developed to quantify fatigue-related damage and its effect on the remaining life of components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060231
EISBN: 978-1-62708-343-0
... engines aerospace structural components commercial aircraft high-cycle fatigue low-cycle thermal fatigue Space Shuttle THE MATERIAL BEHAVIOR and life prediction models discussed in earlier chapters have evolved over the years specifically for assessing structural integrity, durability...
Abstract
This chapter explains how the authors assessed the potential risks of creep-fatigue in several aerospace applications using the tools and techniques presented in earlier chapters. It begins by identifying the fatigue regimes encountered in the main engines of the Space Shuttle. It then describes the types of damage observed in engine components and the methods used to mitigate problems. It also discusses the results of analyses that led to changes in design or approach and examines fatigue-related issues in turbine engines used in commercial aircraft.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430325
EISBN: 978-1-62708-253-2
... be of the low-cycle or high-cycle type ( Ref 6.1 ). Drastic change in temperature causing thermal shock or a large difference in thermal expansion behavior between two structural members can induce plastic strain, giving rise to low-cycle thermal fatigue. In firetube boilers, the most common cause of thermal...
Abstract
Boiler tubes subjected to cyclic or fluctuating loads over extended periods of time are prone to fatigue failure. Fatigue can occur at relatively low stresses and is implicated in almost 80% of the tube failures in firetube boilers. This chapter covers the most common forms of boiler tube fatigue, including mechanical or vibrational fatigue, corrosion fatigue, thermal fatigue, and creep-fatigue interaction. It discusses the causes, characteristics, and impacts of each type and provides several case studies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
... stress along F′G′ , the fatigue life can become very long. The greater the hold-time per cycle, the lower is the number of cycles required to stabilize to the low peak tensile stress. The other extreme of behavior is shown in Fig. 6.10(b) . Here, it is assumed that the stabilized loop becomes PQR...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... 20. Jaske C.E. , Thermal-Mechanical, Low-Cycle Fatigue of AISI 1010 Steel , Thermal Fatigue of Materials and Components , STP 612, Spera D.A. and Mowbray D.F. , Ed., ASTM , 1976 , p 170 – 198 10.1520/STP27891S Mechanical Strain and Thermal Strain In-Phase versus...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490265
EISBN: 978-1-62708-340-9
... with or without low-cycle fatigue; poor creep ductility due to faulty heat treatment (class c) coupled with poor center quality facilitating initiation and poor toughness Retire; grind, overbore, or bottle bore; derate machine; steam cool; control start-stops Improve center quality; heat treatment has been...
Abstract
This chapter covers the failure modes and mechanisms of concern in steam turbines and the methods used to assess remaining component life. It provides a detailed overview of the design considerations, material requirements, damage mechanisms, and remaining-life-assessment methods for the most-failure prone components beginning with rotors and continuing on to casings, blades, nozzles, and high-temperature bolts. The chapter makes extensive use of images, diagrams, data plots, and tables and includes step-by-step instructions where relevant.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
... the high- and low-cyclic life range within the same framework, but only for continuous cycling. Its major problem is that it does not account for patterns other than continuous cycling. For this reason, Coffin introduced variant I. Introducing variant I, redefining frequency as the reciprocal of total...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
... to resist distortion caused by gas loading and thermal stresses, low-cycle fatigue strength to resist the cyclic thermal strains, and oxidation and sulfidation resistance. Material selection includes alloy strength and material processing as well as requirements of mechanical design and heat transfer...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
.... Because large hysteresis loops can develop in polymers, the energy dissipated per cycle as heat may be considerably larger than in metals. And, also because of polymer’s low thermal conductivity, temperatures tend to become higher in localized regions, especially at cracks developed by fatigue. Even small...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320207
EISBN: 978-1-62708-332-4
... the advantages of compacted graphite iron over gray iron and ductile iron. It presents examples of low- and high-frequency thermal cycling, both of which affect the thermal stresses that castings are exposed to during temperature fluctations. Information on optimum carbon and silicon ranges as well as mechanical...
Abstract
Compacted graphite iron (GCI) is a cast iron grade that is engineered through graphite morphology modifications to achieve a combination of thermal and mechanical properties that are in between those of flake graphite iron and ductile iron. This chapter discusses the advantages of compacted graphite iron over gray iron and ductile iron. It presents examples of low- and high-frequency thermal cycling, both of which affect the thermal stresses that castings are exposed to during temperature fluctations. Information on optimum carbon and silicon ranges as well as mechanical property standards for CGI are provided. The chapter describes the critical factors that control CGI and discusses methods of CGI manufacturing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780249
EISBN: 978-1-62708-281-5
... in high mechanical hysteresis. Because of their low thermal conductivity, a large portion of the mechanical work done is converted into heat, which complicates the analysis of fatigue data, particularly at high loading frequencies. The traditional approach to fatigue lifetime prediction due to Wohler...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870267
EISBN: 978-1-62708-344-7
... of this chapter. The fail-safe concept has been adopted in a number of applications. Distinction between High-Cycle and Low-Cycle Fatigue In dealing with remedial measures it is important to distinguish between high-and low-cycle fatigue. In many respects the distinction is arbitrary; some authors prefer...
Abstract
This chapter is largely a compendium of best practices and procedures for minimizing the effects of fatigue. It explains how to make products more resistant to fatigue by choosing the right materials and manufacturing processes, avoiding geometries and features that concentrate strains, preventing or removing surface damage, and by inducing compressive mean stresses that prolong fatigue life. It also discusses the use of property conditioning and restoration treatments, the benefits of interference fits and processes such as coaxing, the effects of assembly damage and operating overload, the importance of surface cleanliness and finish, and the role of inspection, testing, replacement, and repair in safe-life and fail-safe designs. Examples highlighting the benefits and potential pitfalls of proof loading tests are included as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... fatigue cracking resistance of the matrix material. The cyclic strain-fatigue resistance of MMCs has been proposed to be controlled to a large extent by the strain-cycling fatigue resistance of the matrix material, particularly in the low-cycle regime ( Ref 9.2 , 9.3 ). Results of a simple example...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630117
EISBN: 978-1-62708-270-9
... the origin of a low-cycle fatigue-loaded test article Fig. 3 (a) Example of faceted stage 1 fatigue initiation in a cast nickel-base superalloy turbine blade. Arrows denote crack propagation direction. (b) Overall blade fracture and continuation of flatter stage 2 crack propagation emanating from...
Abstract
Fatigue fractures are generally considered the most serious type of fracture in machinery parts simply because fatigue fractures can and do occur in normal service, without excessive overloads, and under normal operating conditions. This chapter first discusses the three stages (initiation, propagation, and final rupture) of fatigue fracture followed by a discussion of its microscopic and macroscopic characteristics. The relationship between stress and strength in fatigue is explained. The next section provides information that may help the uninitiated to appreciate some of the problems of laboratory fatigue testing and of the fatigue process itself. Finally, information on types and statistical aspects of fatigue is provided along with examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
... cycles to failure. With the exception of beryllium, which possesses a number of unusual features, the hcp metals are often low in strength, low in elastic modulus, and of medium to high ductility. Titanium is an exceptional hcp metal. It stands alone in having a relatively high elastic modulus, high...
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
.... As more cycles accumulate, the crack grows until finally the remaining uncracked portion can no longer carry the load, and the component fractures. The fatigue lives of typical steel and aluminum alloys are shown in Fig. 1(b) . If the stress is low enough for this steel alloy, it can be theoretically...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060385
EISBN: 978-1-62708-261-7
... mechanical failure are creep and stress rupture, stress relaxation, low-cycle or high-cycle fatigue, thermal fatigue, tension overload, or a combination of these, as modified by environment. Surface scale, a product of oxidation, can also contribute to material failure at elevated temperartures. Wear...
Abstract
Durability is a generic term used to describe the performance of a material or a component made from that material in a given application. In order to be durable, a material must resist failure by wear, corrosion, fracture, fatigue, deformation, and exposure to a range of service temperatures. This chapter covers several types of component and material failure associated with wear, temperature effects, and crack growth. It examines temperature-induced, brittle, ductile, and fatigue failures as well as failures due to abrasive, erosive, adhesive, and fretting wear and cavitation fatigue. It also discusses preventative measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870045
EISBN: 978-1-62708-344-7
.... It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions. fatigue design fatigue life analysis high-cycle fatigue S-N curve Introduction Traditional <italic>S-N</italic> Curve In attempting...
Abstract
This chapter familiarizes readers with the methods used to quantify the effects of fatigue on component lifetime and failure. It discusses the development and use of S-N (stress amplitude vs. cycles to failure) curves, the emergence of strain-based approaches to fatigue analysis, and important refinements and modifications. It demonstrates the use of approximate equations, including the method of universal slopes and the four-point correlation technique, which provides reasonable estimates of elastic and plastic lines from information obtained in standard tensile tests. It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions.