Skip Nav Destination
Close Modal
Search Results for
low-alloy special-purpose tool steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 442 Search Results for
low-alloy special-purpose tool steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900141
EISBN: 978-1-62708-358-4
... Abstract The low-alloy special-purpose tool steels, designated as group L steels in the AISI classification system, are similar to the water-hardening tool steels but have somewhat greater alloy content. This chapter discusses the metallurgy and performance of low-alloy special-purpose tool...
Abstract
The low-alloy special-purpose tool steels, designated as group L steels in the AISI classification system, are similar to the water-hardening tool steels but have somewhat greater alloy content. This chapter discusses the metallurgy and performance of low-alloy special-purpose tool steels, including those with high carbon content, those with medium carbon content, and those containing nickel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
... include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels. air-hardening tool steel annealing austenitizing high-carbon tool steel high...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900007
EISBN: 978-1-62708-358-4
... … D7 T30407 2.35 … … 12.00 4.00 … 1.00 … … Low-alloy special-purpose tool steels L2 T61202 0.50–1.10 (a) … … 1.00 0.20 … … … … L6 T61206 0.70 … … 0.75 … … 0.25 (c) … 1.50 Mold steels P2 T51602 0.07 … … 2.00 … … 0.20 … 0.50 P3 T51603 0.10...
Abstract
The several specific grades or compositions of tool steels have evolved over time and have been organized into useful groupings. This chapter presents the AISI classification system for tool steels, which categorizes tool steels by their alloying, applications, or heat treatment, and briefly describes the characteristics of each major group. It discusses selection criteria for tool steels, along with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410621
EISBN: 978-1-62708-265-5
... … … 12.00 … … … … … D4 T30404 2.25 … … 12.00 … … 1.00 … … D5 T30405 1.50 … … 12.00 … … 1.00 3.00 … D7 T30407 2.35 … … 12.00 4.00 … 1.00 … … Low-alloy special-purpose tool steels L2 T61202 0.50–1.10 (a) … … 1.00 0.20 … … … … L6 T61206 0.70...
Abstract
Tools steels are defined by their wear resistance, hardness, and durability which, in large part, is achieve by the presence of carbide-forming alloys such as chromium, molybdenum, tungsten, and vanadium. This chapter describes the alloying principles employed in various tool steels, including high-speed, water-hardening, shock-resistant, and hot and cold work tool steels. It discusses the influence of alloy design on the evolution of microstructure and properties during solidification, heat treating, and hardening operations. It also describes critical phase transformations and the effects of partitioning, precipitation, segregation, and retained austenite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060273
EISBN: 978-1-62708-261-7
... max … 0.20–1.35 … 0.35 max … S6 T41906 0.40–0.50 1.20–1.50 2.00–2.50 1.20–1.50 … 0.30–0.50 … 0.20–0.40 … S7 T41907 0.45–0.55 0.20–0.90 0.20–1.00 3.00–3.50 … 1.30–1.80 … 0.20–0.30 (d) … Low-alloy special-purpose tool steels L2 T61202 0.45–1.00 (b) 0.10–0.90...
Abstract
Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310285
EISBN: 978-1-62708-326-3
... by typical use Class D High-carbon high-chromium cold-worked tool steels Class L Low-alloy special-purpose tool steels Class S Shock-resisting tool steels Class P Plastic mold tool steels Class H Hot-worked tool steels Classified by chemical composition Class T Tungsten high...
Abstract
The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here are primarily from AISI. It presents the classification of tool steels and discusses the principles and processes of tool steel heat treating, namely normalizing, annealing, hardening, and tempering. Various factors associated with distortion in several tool steels are also covered. The chapter discusses the composition, classification, and properties of unalloyed and low-alloy cold-worked tool steels; medium and high-alloy cold-worked tool steels; and 18% nickel maraging steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170573
EISBN: 978-1-62708-297-6
...-purpose cermet with a low-chromium, low-molybdenum binder steel composition and 45 vol% TiC. It is comparatively tough and readily machinable in the annealed condition, and it quench hardens to a level of 70 HRC. It is well suited for tool and wear applications in which operating temperatures do...
Abstract
This article discusses the applications, compositions, and properties of cemented carbides and cermets. It explains how alloying elements, grain size, and binder content influence the properties and behaviors of cemented carbides. It also discusses the properties of steel-bonded carbides, or cermets, the various grades available, and the types of applications for which they are suited.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170210
EISBN: 978-1-62708-297-6
... … S6 T41906 0.40–0.50 1.20–1.50 2.00–2.50 1.20–1.50 … 0.30–0.50 … 0.20–0.40 … S7 T41907 0.45–0.55 0.20–0.90 0.20–1.00 3.00–3.50 … 1.30–1.80 … 0.20–0.30 (d) … Low-alloy special-purpose tool steels L2 T61202 0.45–1.00 (b) 0.10–0.90 0.50 max 0.70–1.20 … 0.25 max...
Abstract
This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels. It explains how the properties of these steels are determined by alloying elements, such as tungsten, molybdenum, vanadium, manganese, and chromium, and the presence of alloy carbides. It describes the types of carbides that form and how they contribute to wear resistance, toughness, high-temperature strength, and other properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
...-20th century, it is far from accurate today. Carbon and low-alloy bar steels currently are manufactured in high volume to the highest quality by electric furnace melting, ladle metallurgy for impurity and inclusion control, and continuous casting. Nevertheless, tool steels are special and require...
Abstract
Tool steels are the ferrous alloys used to manufacture tools, dies, and molds that shape, form, and cut other materials, including steels, nonferrous metals, and plastics. This chapter explores the considerations that make tool steels a very special class of steels, the long historical evolution of iron and steel manufacture, including steels for tools, and the development of tool steels as they emerged from the general class of iron and steel products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400001
EISBN: 978-1-62708-258-7
... and are called weathering steels. The ASTM specifications cover several of these steels. Low-Alloy Steels with Formability There are some steels that are designed for optimal formability in sheet-forming applications. One common steel is specified as drawing quality, special killed. This cold-rolled, low...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
... their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage. alloy composition carbon and low-alloy steel friction and wear properties microstructure tool steel wrought product...
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060175
EISBN: 978-1-62708-261-7
... carbon steels, high-strength low-alloy steels, stainless steels, tool steels, high-speed tool steels, maraging steels, and precipitation-hardening steels. The purpose of this chapter is to introduce the various types of steels, compositional categories, and effects of alloying on properties. The main...
Abstract
This chapter describes the classification of steels and the various compositional categories of commercial steel products. It explains how different alloying elements affect the properties of carbon and low-alloys steels and discusses strength, toughness, and corrosion resistance and how to improve them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280189
EISBN: 978-1-62708-267-9
...-base superalloys, which have descended from stainless steels, usually machine more easily than the nickel-base and cobalt-base superalloys under similar conditions of heat treatment. However, the iron-base alloys do present chip-breaking problems, which often require special tool geometries...
Abstract
The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool materials, tool life, and practical issues such as set up time, tool changes, and production scheduling. It describes several machining processes, including turning, boring, planing, trepanning, shaping, broaching, drilling, tapping, thread milling, and grinding. It also provides information on toolholders, fixturing, cutting and grinding fluids, and tooling modifications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120079
EISBN: 978-1-62708-269-3
... Cutting tools used to machine titanium require abrasion resistance and adequate hot hardness. Despite the use of new tool materials—such as special ceramics, coated carbides, polycrystalline diamonds, and cubic boron nitride—in metal removal of steels, cast irons, and heat-resistant alloys, none...
Abstract
This chapter discusses the factors that influence the cost and complexity of machining titanium alloys. It explains how titanium compares to other metals in terms of cutting force and power requirements and how these forces, along with cutting speeds and the use of cutting fluids, affect tool life, surface finish, and part tolerances. The chapter also includes a brief review of nontraditional machining methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... such as aluminum, tin, and lead are easily extruded. The most commonly cold-extruded metals are, in order of increasing processing difficulty, aluminum and aluminum alloys, copper alloys, low- and medium-carbon steels, modified carbon steels, low-alloy steels, and stainless steels. Special glass lubricants...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740213
EISBN: 978-1-62708-308-9
... of metallic work materials, in order of decreasing machinability, include: Magnesium alloys Aluminum alloys Copper alloys Gray irons Nodular irons Carbon steels Low-alloy steels Stainless steels Hardened and high-alloy steels Nickel-base superalloys Titanium alloys...
Abstract
This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320001
EISBN: 978-1-62708-347-8
... Abstract Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels...
Abstract
Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels are preferred because of higher hardenability and the desired microstructures of the hardened case and core needed for the high fatigue strength of gears. This chapter provides an overview of the key considerations involved in the selection and application of heat treating processes for alloy steel gears and serves as an introduction to the subsequent chapters in this book.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... or low-alloy nickel 11 6.3 Low-alloy special purpose tool steel 7.1–16 3.9–8.7 Pure Dysprosium (Dy) 9.3–13 5.2–7.2 Nickel molybdenum alloy steel 11–12 6.1–6.6 Pure Palladium (Pd) 11 6.3 Pure Thorium (Th) 11 6.4 Wrought iron 10–13 5.7–7.0 Oil-hardening cold work tool...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
1