Skip Nav Destination
Close Modal
Search Results for
loading rate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 745 Search Results for
loading rate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780216
EISBN: 978-1-62708-281-5
...Abstract Abstract This article discusses the material and engineering issues associated with plastic components subjected to impact. The first part covers the effects of loading rate, temperature, and state of stress on both deformation and mode of failure. It discusses standard impact tests...
Abstract
This article discusses the material and engineering issues associated with plastic components subjected to impact. The first part covers the effects of loading rate, temperature, and state of stress on both deformation and mode of failure. It discusses standard impact tests, along with their associated results. A brief discussion on the linear elastic fracture mechanics method is presented, along with an example of its effectiveness as a predictive tool for impact performance. Various issues with a bearing on impact performance, such as processing, chemical attack, and aging, are also described. The second part describes the engineering calculations used to predict the performance of thin plastic beams, plates, and shells. The issue of assuming small displacements for the calculation of plastic structure performance is discussed and its limitations described. An example of the consequence of the very low modulus of elasticity associated with plastics and some plastic design solutions are offered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060065
EISBN: 978-1-62708-355-3
... describes load condition factors, such as strain rate, machine rigidity, and various testing modes by load control, speed control, strain control, and strain-rate control. It provides a description of environmental chambers for testing and discusses the processes involved in the force verification...
Abstract
This chapter reviews the current technology and examines force application systems, force measurement, strain measurement, important instrument considerations, gripping of test specimens, test diagnostics, and the use of computers for gathering and reducing data. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment. The chapter discusses various types of testing machines and their operations. Emphasis is placed on strain-sensing equipment. The chapter briefly describes load condition factors, such as strain rate, machine rigidity, and various testing modes by load control, speed control, strain control, and strain-rate control. It provides a description of environmental chambers for testing and discusses the processes involved in the force verification of universal testing machines. Specimen geometries and standard tensile tests are also described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610101
EISBN: 978-1-62708-303-4
... Calculation for Center-Cracked Panel Size Effect Example: Maximum Stress to Fracture Example: Calculation of the Maximum Safe Flaw Size Plane-Strain Fracture Toughness (K<sub>Ic</sub>) Test (ASTM E 399) Nonlinear Fracture Toughness Testing Yield Strength Loading Rate Temperature...
Abstract
Fracture mechanics is the science of predicting the load-carrying capabilities of cracked structures based on a mathematical description of the stress field surrounding the crack. The fundamental ideas stem from the work of Griffith, who demonstrated that the strain energy released upon crack extension is the driving force for fracture in a cracked material under load. This chapter provides a summary of Griffith’s work and the subsequent development of linear elastic and elastic-plastic fracture mechanics. It includes detailed illustrations and examples, familiarizing readers with the steps involved in determining strain energy release rates, stress intensity factors, J-integrals, R-curves, and crack tip opening displacement parameters. It also covers fracture toughness testing methods and the effect of measurement variables.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540169
EISBN: 978-1-62708-309-6
... of the fracture accompanied only by plastic strain local to the crack surface. This term is called . (2) The strain energy loss rate associated with nonrecoverable displacements of the points of load application; however, this term is assumed zero. Fracture toughness, C , is the component of work...
Abstract
This chapter discusses various types of material fracture toughness and the methods by which they are determined. It begins with a review of the basic principles of linear elastic fracture mechanics, covering the Griffith-Irwin theory of fracture, the concept of strain energy release rate, the use of fracture indices and failure criteria, and the ramifications of crack-tip plasticity in ductile and brittle fractures. It goes on to describe the different types of plain-strain and plane-stress fracture toughness, explaining how they are measured and how they are influenced by metallurgical and environmental variables and loading conditions. It also examines the crack growth resistance curves of several aluminum alloys and describes the characteristics of fracture when all or some of the applied load is in the plane of the crack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060251
EISBN: 978-1-62708-355-3
...Abstract Abstract High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes...
Abstract
High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes involved in determining strain rate effects in tension by conventional tensile tests and covers expanding ring tests, flat plate impact tests, split-Hopkinson pressure bar tests, and rotating wheel tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540215
EISBN: 978-1-62708-309-6
... their widths with stress profiles. It also describes how material-related factors, load history, corrosion, and temperature affect crack growth rates, and discusses the steps involved in life assessment. corrosion-fatigue damage tolerance analysis finite element method residual strength stress...
Abstract
This chapter presents a fracture-mechanics-based approach to damage tolerance, accounting for mechanical, metallurgical, and environmental factors that drive crack development and growth. It begins with a review of stress-intensity factors corresponding to a wide range of crack geometries, specimen configurations, and loading conditions. The discussion covers two- and three-dimensional cracks as well as the use of correction factors and problem-simplification techniques for dealing with nonstandard configurations. The chapter goes on to describe how fatigue loading affects crack growth rates in each of the three stages of progression. Using images, diagrams, and data plots, it reveals how cracks advance in step with successive stress cycles and explains how fatigue crack growth rates can be determined by examining striations on fracture specimens and correlating their widths with stress profiles. It also describes how material-related factors, load history, corrosion, and temperature affect crack growth rates, and discusses the steps involved in life assessment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870201
EISBN: 978-1-62708-344-7
... then employ to analyze the crack growth behavior of various materials, including steels and nonferrous alloys, under constant-amplitude loading. The authors then deal with the effects of complex loading using crack retardation and crack closure models to show how load fluctuations can slow crack growth rates...
Abstract
This chapter provides a quantitative treatment of the cracking mechanisms associated with fatigue, drawing on the principles of fracture mechanics. It explains that although fracture mechanics originated with the aim of understanding sudden and catastrophic crack extension, the main premise of a stress field in the vicinity of the crack also applies to the study of cycle-by-cycle stable crack growth. A detailed review is given of the many developments and discoveries that helped shape the theory and methods collectively defined as crack mechanics, which the authors then employ to analyze the crack growth behavior of various materials, including steels and nonferrous alloys, under constant-amplitude loading. The authors then deal with the effects of complex loading using crack retardation and crack closure models to show how load fluctuations can slow crack growth rates and even cause total crack arrest. They also present the results of a study on crack initiation, propagation, and fracture in circular (rather than rectangular) specimens and a fatigue study on ductile and quasi-brittle materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490021
EISBN: 978-1-62708-340-9
... lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate...
Abstract
The toughness of a material is its ability to absorb energy in the form of plastic deformation without fracturing. It is thus a measure of both strength and ductility. This chapter describes the fracture and toughness characteristics of metals and their effect on component lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well as grain size, inclusion content, and impurities. It also presents the theory and use of elastic-plastic fracture mechanics and discusses the causes, effects, and control of temper embrittlement in various types of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
... of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well...
Abstract
Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090367
EISBN: 978-1-62708-266-2
... 22–33 (20–30) 28 (25) 18Ni, high purity <33 (<30) <33 (<30) Note: Based on a crack growth rate of 2.5 × 10 −4 mm/h (10 −5 in./h). Modified compact specimens: constant load for initiation and wedge-loaded with a bolt for arrest. Test environment: saltwater at room temperature...
Abstract
This chapter addresses the challenge of selecting an appropriate stress-corrosion cracking (SCC) test to evaluate the serviceability of a material for a given application. It begins by establishing a generic model in which SCC is depicted in two stages, initiation and propagation, that further subdivide into several zones plus a transition region. It then discusses SCC test standards before describing basic test objectives and selection criteria. The chapter explains how to achieve the required loading conditions for different tests and how to prepare test specimens to determine elastic strain, plastic strain, and residual stress responses. It also describes the difference between smooth and precracked specimens and how they are used, provides information on slow-strain-rate testing and how to assess the results, and discusses various test environments and procedures, including tests for weldments. The chapter concludes with a section on how to interpret time to failure, threshold stress, percent survival, stress intensity, and propagation rate data, and assess the precision of the associated tests.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270110
EISBN: 978-1-62708-301-0
...Abstract Abstract Helicopter control mechanisms were failing at a higher than normal rate on high-altitude flights in mountainous regions. All of the failures occurred at or near attachment points on pressurized tubes, causing a pressure drop and partial loss of function. Visual and SEM...
Abstract
Helicopter control mechanisms were failing at a higher than normal rate on high-altitude flights in mountainous regions. All of the failures occurred at or near attachment points on pressurized tubes, causing a pressure drop and partial loss of function. Visual and SEM examinations revealed cracks along the inner surface of the tubes, some of which had propagated through the thickness of the wall. Cracks emanating from weld toes were also visible. Based on their observations, investigators concluded that the tubes were subjected to excessive flexural load, causing cracks due to fatigue. They also provide recommendations for avoiding such failures in the future.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... Influence of texture on fatigue crack growth in Ti-6Al-4V. Fatigue crack growth rates are higher when basal planes are loaded in tension. The elastic modulus in tension for the basal texture (B) is 109 GPa (15.8 × 10 6 psi); for the transverse texture (T), 126 GPa (18.3 × 10 6 psi). The yield stress...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090241
EISBN: 978-1-62708-266-2
...). This chapter describes those conditions, focusing initially on the effects of alloying elements and temper on solution potential and how it compares to other metals. It then addresses the issue of intergranular corrosion and its role in SCC. It explains how factors such as stress loads, grain structure...
Abstract
Aluminum is protected by a barrier oxide film that, if damaged, reforms immediately in most environments. Despite this inherent corrosion resistance, there are conditions where aluminum alloys, like many materials, are subject to the effects of stress-corrosion cracking (SCC). This chapter describes those conditions, focusing initially on the effects of alloying elements and temper on solution potential and how it compares to other metals. It then addresses the issue of intergranular corrosion and its role in SCC. It explains how factors such as stress loads, grain structure, and environment determine whether or not stress-corrosion cracking develops in a susceptible alloy. It also provides stress-corrosion ratings for many alloys, tempers, and product forms and includes information on hydrogen-induced cracking.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
...Abstract Abstract This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060001
EISBN: 978-1-62708-343-0
... of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression. activation...
Abstract
This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... of anelastic deformation. The sudden application of the tensile load may elastically strain the iron lattice at such a high rate that carbon migration to favored sites cannot occur as the load is applied. However, if the material remains under load, the time-dependent migration to favored sites...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860269
EISBN: 978-1-62708-348-5
... done by a load, P , causing a displacement, Δ: (8.1) V = P △ / 2 = C P 2 / 2 where C = Δ/ P , the elastic compliance. The loss of elastic potential energy with crack extension of unit area, A , is defined as the strain-energy release rate, G . For a crack extending...
Abstract
This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
..., on the fracture surface corresponds to one fatigue load cycle. The arrow indicates the crack propagation direction. Fig. 14 A typical fatigue-crack growth-rate curve consists of three regions: a slow-growing region (threshold), a linear region (the middle section of the curve), and a terminal region...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610263
EISBN: 978-1-62708-303-4
... of notch locations for toughness testing of weld metals (a and b) and heat-affected zone (HAZ) (c through g). Source: Ref 16 Fig. 4 Stress concentration factor ( K t ) versus bolt diameter for bolts with standard metric threads. Source: Ref 6 Fig. 29 Effects of (a) loading rate, (b...
Abstract
This chapter discusses the fatigue behavior of bolted, riveted, and welded joints. It describes the relative strength of machined and rolled threads and the effect of thread design, preload, and clamping force on the fatigue strength of bolts made from different steels. It explains where fatigue failures are likely to occur in cold-driven rivet and friction joints, and why the fatigue strength of welded joints can be much lower than that of the parent metal, depending on weld shape, joint geometry, discontinuities, and residual stresses. The chapter also explains how to improve the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals.