Skip Nav Destination
Close Modal
Search Results for
liquid metal embrittlement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 324 Search Results for
liquid metal embrittlement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080423
EISBN: 978-1-62708-304-1
... behavior of alloys in molten aluminum, zinc, lead, lithium, sodium, magnesium, mercury, cadmium, tin, antimony, and bismuth. It also discusses the problem of liquid metal embrittlement, explaining how it is caused by low-melting-point metals during brazing, welding, and heat treating operations...
Abstract
Liquid metals are frequently used as a heat-transfer medium because of their high thermal conductivities and low vapor pressures. Containment materials used in such heat-transfer systems are subject to molten metal corrosion as well as other problems. This chapter reviews the corrosion behavior of alloys in molten aluminum, zinc, lead, lithium, sodium, magnesium, mercury, cadmium, tin, antimony, and bismuth. It also discusses the problem of liquid metal embrittlement, explaining how it is caused by low-melting-point metals during brazing, welding, and heat treating operations.
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 36 Liquid metal embrittlement of a low-alloy bolt plated with cadmium that failed during service. Cadmium was found to have penetrated at the grain boundaries due to service above 230 °C. (a) Overall fracture surface. (b) SEM examination of fracture showing intergranular fracture. (c) X
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870099
EISBN: 978-1-62708-299-0
... Abstract Environmentally assisted cracking is a generic term that includes various cracking phenomena such as stress-corrosion cracking (SCC), corrosion fatigue cracking, and liquid-metal embrittlement. This chapter describes these cracking mechanisms beginning with SCC and the factors...
Abstract
Environmentally assisted cracking is a generic term that includes various cracking phenomena such as stress-corrosion cracking (SCC), corrosion fatigue cracking, and liquid-metal embrittlement. This chapter describes these cracking mechanisms beginning with SCC and the factors that influence its formation. It covers alloy selection and mitigation techniques and includes examples of SCC in aircraft components. The chapter also addresses corrosion fatigue, explaining how different environments and operating conditions affect crack propagation, fatigue strength, and fatigue life. It includes information on liquid-metal embrittlement as well.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130285
EISBN: 978-1-62708-284-6
... of microstructural transformation. A section describing the types of embrittlement from tempering, along with mechanical tests for the determination of temper embrittlement (TE), is presented. Various factors involved in the interaction of the TE phenomenon with hydrogen embrittlement and liquid-metal embrittlement...
Abstract
This chapter reviews the causes and cases associated with the problems originated by tempering of steels. To provide background on this phenomenon, a brief description of the martensite reactions and the steel heat treatment of tempering is given to review the different stages of microstructural transformation. A section describing the types of embrittlement from tempering, along with mechanical tests for the determination of temper embrittlement (TE), is presented. Various factors involved in the interaction of the TE phenomenon with hydrogen embrittlement and liquid-metal embrittlement are also provided. The cases covered are grinding cracks on steel cam shaft and transgranular and intergranular crack path in commercial steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
...-corrosion cracking, liquid metal embrittlement, and surface treatments. corrosion resistance crevice corrosion hydrogen embrittlement localized corrosion stress-corrosion cracking titanium alloys uniform corrosion Corrosion is a process that results in the degradation of a metal or an alloy...
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Image
Published: 01 August 2005
of the melting range of the filler metal. Note: 316L stainless steel is sensitive to liquid metal embrittlement by copper-base brazing alloys. Adapted from Keller et al. [1990]
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130043
EISBN: 978-1-62708-284-6
... stresses. These high residual tensile stresses can drastically reduce the fatigue strength or have other ramifications in service. Overheating can cause excessive grain growth, with resulting increases in hardenability and increased embrittlement. Underheating can cause poor mechanical properties...
Abstract
This chapter provides an overview of the possible mechanisms of failure for heat treated steel components and discusses the techniques for examining fractures, ductile and brittle failures, intergranular failure mechanisms, and fatigue. It begins with a description of the general sources of component failure. This is followed by a section on the stages of a failure analysis, which can proceed one after the other or occur at the same time. These stages of analysis are collection of background data, preliminary visual examination, nondestructive testing, selection and preservation of specimens, mechanical testing, macroexamination, microexamination, metallographic examination, determination of the fracture mechanism, chemical analysis, exemplar testing, and analysis and writing the report. The chapter ends with a discussion on various processes involved in the determination of the fracture mechanism.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030003
EISBN: 978-1-62708-282-2
.... For stress-corrosion cracking, the stress is often externally applied. For hydrogen damage, liquid metal induced embrittlement, and solid metal induced embrittlement, the stress is induced by reactions with the environment. In the time between the publication of the first edition of this book...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860343
EISBN: 978-1-62708-348-5
... or liquid velocity Reynolds number Heat and mass transfer coefficients History of metal Condition of surface Oxide film thickness Specific surface area (cm 2 /g) Total mass of metal Presence of other metals (eutectic formation or thermite reaction possible) Presence of contaminants...
Abstract
This chapter discusses the compatibility problems that arise from chemical or physical interactions between liquefied gases and the common materials used in their production, storage, transportation, distribution, and use. The discussion covers the compatibility of materials with liquid oxygen and liquid fluorine. Hydrogen-environment embrittlement is unique to low-temperature hydrogen systems and is also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180197
EISBN: 978-1-62708-256-3
... conductor, usually of metal or graphite, that leads current into or out of a solution (electrolyte). electrolyte. A material, usually a liquid or paste, that will conduct an electric current. embrittlement. The severe loss of ductility and/or toughness of a material. See also hydrogen embrittlement...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.9781627082563
EISBN: 978-1-62708-256-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090271
EISBN: 978-1-62708-266-2
... composition, designation, and grade of nearly two dozen commercial titanium alloys and the different types of media (including oxidizers, organic compounds, hot salt, and liquid metal) in which SCC has been observed. It discusses the mechanical and metallurgical factors that influence SCC behavior...
Abstract
Titanium alloys are generally resistant to stress-corrosion cracking (SCC), but under certain conditions, the potential for problems exists. This chapter identifies the types of service environments where titanium alloys have exhibited signs of SCC. It begins by describing the nominal composition, designation, and grade of nearly two dozen commercial titanium alloys and the different types of media (including oxidizers, organic compounds, hot salt, and liquid metal) in which SCC has been observed. It discusses the mechanical and metallurgical factors that influence SCC behavior and examines the cracking and fracture mechanisms that appear to be involved. The chapter also includes information on SCC test standards and provides detailed guidelines on how to prevent or mitigate the effects of SCC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030380
EISBN: 978-1-62708-282-2
.... A chemical substance that yields hydrogen ions (H+) when dissolved in water; also a substance that dissociates to produce a proton (H+) in any medium, that is, a proton donor. Compare with base. acid embrittlement. A form of hydrogen embrittlement that may be induced in some metals by acid. acid rain...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.9781627082822
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910497
EISBN: 978-1-62708-250-1
... factor. Environmental cracking is a general term that includes corro- sion fatigue, high-temperature hydrogen attack, hydrogen blister- Glossary of Corrosion-Related Terms 505 ing, hydrogen embrittlement, liquid metal embrittlement, stress- corrosion cracking, and sulfide stress cracking. The following...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
... hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
..., etc. Ductility decreases, cracking Stress corrosion cracking All steel Prolonged exposure to a material-specific aggressive environment and sustained tensile stresses Brittle fracture Liquid metal induced embrittlement All steel Molten low- T M metal exposure Ductility decreases...
Abstract
A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously in order to cause brittle fracture in a normally ductile steel. The chapter then discusses the macroscale characteristics and microstructural aspects of brittle fracture. A summary of the types of embrittlement experienced by ferrous alloys is presented. The chapter concludes with a brief section providing information on mixed fracture morphology.
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820177
EISBN: 978-1-62708-339-3
... in certain other problems. Hydrogen coming from moisture in certain weld consumables or during nonoptimal field welding conditions can become dissolved in liquid weld metal. This dissolved hydrogen can cause cracking during solidification, as well as embrittlement of the weld. Dissolved hydrogen...
Abstract
This chapter reviews weld corrosion in three key application areas: petroleum refining and petrochemical operations, boiling water reactor piping systems, and components used in pulp and paper plants. The discussion of each area addresses general design and service characteristics, types of weld corrosion issues, and prevention or mitigation strategies.
1