Skip Nav Destination
Close Modal
Search Results for
liquid brazing filler metals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67 Search Results for
liquid brazing filler metals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... American Welding Society (AWS) brazing alloys for elevated-temperature service AWS classification Composition, % Other elements total Solidus, °F (°C) Liquidus, °F (°C) Brazing range, °F (°C) Cr B Si Fe C P S Al Ti Mn Cu Zr Ni Nickel-based alloy filler metals (a) BNi-1...
Abstract
Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application decisions. It discusses the basic concepts of fusion welding and the differences between solid-solution-hardened and precipitation-hardened wrought superalloys. It addresses joint integrity, design, weld-related cracking, and the effect of grain size, precipitates, and contaminants. It covers common fusion welding techniques, defect prevention, fixturing, heat treatments, and general practices, including the use of filler metals. It also discusses several solid-state welding methods, superplastic forming, and transient liquid phase bonding, a type of diffusion welding process. The chapter includes extensive information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... metals and the types of flaws exhibited by brazed joints. brazed joints brazing filler metals eddy current inspection liquid penetrant inspection magnetic particle inspection nondestructive inspection radiographic inspection ultrasonic inspection visual inspection welding weldments...
Abstract
Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler metals and the types of flaws exhibited by brazed joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290165
EISBN: 978-1-62708-306-5
.... In a properly designed joint, the molten brazing filler metal is drawn completely through the joint area when processed in a protective atmosphere ( Fig. 7.1 ). Capillary attraction is the physical force that governs the action of a liquid against solid surfaces in small, confined areas. The phenomena...
Abstract
Brazing and soldering processes use a molten filler metal to wet the mating surfaces of a joint, with or without the aid of a fluxing agent, leading to the formation of a metallurgical bond between the filler and the respective components. This chapter discusses the characteristics, advantages, and disadvantages of brazing and soldering. The first part focuses on the fundamentals of the brazing process and provides information on filler metals and specific brazing methods. The soldering portion of the chapters provides information on solder alloys used, selection criteria for base metal, the processes involved in precleaning and surface preparation, types of fluxes used, solder joint design, and solder heating methods.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230001
EISBN: 978-1-62708-351-5
... a joint, and the health, safety, and environmental aspects of brazing. brazed joints brazing contact angle filler metals jigging joining soldering 1.1 Joining Methods BRAZING AND SOLDERING jointly represent one of several methods for joining solid materials. These methods may...
Abstract
Brazing and soldering jointly represent one of several methods for joining solid materials. This chapter summarizes the principal characteristics of the various joining methods. It then discusses key parameters of brazing including surface energy and tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials, new phase formations, significance of the joint gap, and the strength of metals. The chapter also describes issues in processing aspects that must be considered when designing a joint, and the health, safety, and environmental aspects of brazing.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230207
EISBN: 978-1-62708-351-5
...Abstract Abstract This chapter discusses the process, principles, and modeling of the diffusion brazing system. The applications of diffusion brazing to wide-gap joining and layer manufacturing are also discussed. diffusion brazing filler metals layer manufacturing wide-gap modeling...
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440001
EISBN: 978-1-62708-352-2
... contact angle diffusion bonding filler metals jigging joining joint gap pressure welding soldering surface energy surface roughness surface tension wetting 1.1 Joining Methods SOLDERING AND BRAZING represent one of several types of methods for joining solid materials. These methods may...
Abstract
Soldering and brazing represent one of several types of methods for joining solid materials. These methods may be classified as mechanical fastening, adhesive bonding, soldering and brazing, welding, and solid-state joining. This chapter summarizes the principal characteristics of these joining methods. It presents a comparison between solders and brazes. Further details on pressure welding and diffusion bonding are also provided. Key parameters of soldering are discussed, including surface energy and surface tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials and intermetallic growth, significance of the joint gap, and the strength of metals. The chapter also examines the principal aspects related to the design and application of soldering processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
... that forms liquid braze metal by diffusion between dissimilar base metals or between base metal and filler metal preplaced at the faying surfaces. The process is used with the application of pressure. Infrared brazing is a brazing process that uses heat radiated from an infrared source.) Other methods...
Abstract
Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design, and testing.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230221
EISBN: 978-1-62708-351-5
... be accomplished by three principal routes. One of these is to apply metallizations to the joint surfaces so as to render them essentially metallic in character. The chosen metallization must obviously not be significantly soluble in the filler alloy or dewetting can occur if the molten braze erodes through...
Abstract
This chapter discusses the processes involved in the wetting, spreading, and chemical interaction of a braze on a nonmetal. The chapter reviews the key materials and process issues relating to the joining of nonmetals using active brazing. Emphasis is placed on the differences in brazing to metals by established methods. The chapter also describes the designing process and properties of metal/nonmetal joints.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230047
EISBN: 978-1-62708-351-5
... of the few applications for zinc, as a filler metal, is for joining beryllium and its alloys by dip brazing. Zinc has a sufficiently low melting point to make it possible to circumvent problems of its volatility. Zinc wets beryllium well and does not undergo any unfavorable metallurgical reactions...
Abstract
This chapter presents an overview of families of brazing alloys that one is likely to encounter in a manufacturing environment. It discusses the metallurgical aspects of brazing and includes a survey of brazing alloy systems. A discussion of deleterious and beneficial impurities is provided with examples. The chapter also describes the application of phase diagrams to brazing.
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230143
EISBN: 978-1-62708-351-5
... to be considered or, alternatively, the functional requirements of the product may need to be relaxed. 4.1 Metallurgical Constraints and Solutions In principle, most metals can be joined using filler alloys. However, when there is a requirement to braze two different parent materials together, the available...
Abstract
This chapter considers the role of materials in brazing operations and the manner in which they impact on the choice of processing conditions and their optimization. The concepts covered are metallurgical and mechanical constraints, and constraints imposed by the components and their solutions as well as service environment considerations.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230105
EISBN: 978-1-62708-351-5
.... If the flux is liquid at the joining temperature, it has to wet the joint surfaces in order to be effective. A flux that is liquid can beneficially help suppress the volatilization of high vapor-pressure constituents of filler metals and thereby improve joint quality. This is particularly true in dip brazing...
Abstract
This chapter discusses joining atmospheres that are used for brazing, along with their advantages and disadvantages. It discusses the processes, advantages, and disadvantages of chemical fluxing, self-fluxing, and fluxless brazing. Information on stop-off compounds that are considered as the antithesis of fluxes is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290079
EISBN: 978-1-62708-306-5
... Oxyacetylene braze welding is a method of oxyfuel gas welding capable of joining many base metals, but it is used primarily on steel and cast iron with a copper alloy filler metal (rod) and a flux. Braze welding is similar to torch brazing with a filler rod, except that joint openings are wider...
Abstract
This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290001
EISBN: 978-1-62708-306-5
... interfaces, and thereby joins the parts. This process is similar to a brazing process. Cold Welding Forge Welding Friction Welding Brazing is a process for joining solid metals in close proximity by introducing a liquid metal that melts above 450 °C (840 °F). A sound brazed joint generally...
Abstract
Joining comprises a large number of processes used to assemble individual parts into a larger, more complex component or assembly. The selection of an appropriate design to join parts is based on several considerations related to both the product and the joining process. Many product design departments now improve the ease with which products are assembled by using design for assembly (DFA) techniques, which seek to ensure ease of assembly by developing designs that are easy to assemble. This chapter discusses the general guidelines for DFA and concurrent engineering rules before examining the various joining processes, namely fusion welding, solid-state welding, brazing, soldering, mechanical fastening, and adhesive bonding. In addition, it provides information on several design considerations related to the joining process and selection of the appropriate process for joining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000167
EISBN: 978-1-62708-312-6
.... Unlike welding, brazing does not involve remelting of the base metal. In brazing, only the filler metal melts, and the joining of components is achieved via partial diffusion of filler metal into the base metal. Brazing filler metal, by definition, must melt above 450 °C (840 °F) and below the melting...
Abstract
This chapter describes secondary processes employed in the production of powder-metal stainless steel parts, including various machining operations, welding, brazing, sinter bonding, resin impregnation, re-pressing and sizing, and surface finishing. It also discusses the factors that affect the machinability and weldability of sintered stainless steels.
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440145
EISBN: 978-1-62708-352-2
... will be made in this area over the next few years. 4.1.2.2 Active Solders Reactive filler metals are mostly brazes, and further details of their design and function can be found in the planned companion volume Principles of Brazing . The basis of the approach is to incorporate into the filler metal...
Abstract
This chapter considers the materials and processing aspects of soldering and the manner in which these interrelate in the development of joining processes. It discusses the processes involved in eliminating or suppressing metallurgical and mechanical constraints as well as constraints imposed by the components.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440049
EISBN: 978-1-62708-352-2
... of applying the solder to silicon components is simply to coat the back surface of the silicon die with a thin layer of gold, applied by a vapor-phase technique. On heating the gold-metallized silicon to above 363 °C (685 °F), the resulting interdiffusion between the gold and silicon generates liquid filler...
Abstract
This chapter presents an overview and survey of solder alloy systems. Extensive reference is made to phase diagrams and their interpretation. The chapter describes the effect of metallic impurities on different solders. The chapter concludes with a review of the key characteristics of eutectic alloys and of the factors most effective at depressing the melting point of solders by eutectic alloying.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.9781627083515
EISBN: 978-1-62708-351-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... created in metal removal operations include: Brazing involves joining solid metals in close proximity by introducing a liquid metal that melts above 450 °C (840 °F). A sound brazed joint generally results when an appropriate filler alloy is selected, the parent metal surfaces are clean and remain...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.