Skip Nav Destination
Close Modal
Search Results for
linear elastic fracture mechanics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 283 Search Results for
linear elastic fracture mechanics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... Abstract Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490021
EISBN: 978-1-62708-340-9
... and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well...
Abstract
The toughness of a material is its ability to absorb energy in the form of plastic deformation without fracturing. It is thus a measure of both strength and ductility. This chapter describes the fracture and toughness characteristics of metals and their effect on component lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well as grain size, inclusion content, and impurities. It also presents the theory and use of elastic-plastic fracture mechanics and discusses the causes, effects, and control of temper embrittlement in various types of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780216
EISBN: 978-1-62708-281-5
... with their associated results. A brief discussion on the linear elastic fracture mechanics method is presented, along with an example of its effectiveness as a predictive tool for impact performance. Various issues with a bearing on impact performance, such as processing, chemical attack, and aging, are also described...
Abstract
This article discusses the material and engineering issues associated with plastic components subjected to impact. The first part covers the effects of loading rate, temperature, and state of stress on both deformation and mode of failure. It discusses standard impact tests, along with their associated results. A brief discussion on the linear elastic fracture mechanics method is presented, along with an example of its effectiveness as a predictive tool for impact performance. Various issues with a bearing on impact performance, such as processing, chemical attack, and aging, are also described. The second part describes the engineering calculations used to predict the performance of thin plastic beams, plates, and shells. The issue of assuming small displacements for the calculation of plastic structure performance is discussed and its limitations described. An example of the consequence of the very low modulus of elasticity associated with plastics and some plastic design solutions are offered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540169
EISBN: 978-1-62708-309-6
... Abstract This chapter discusses various types of material fracture toughness and the methods by which they are determined. It begins with a review of the basic principles of linear elastic fracture mechanics, covering the Griffith-Irwin theory of fracture, the concept of strain energy release...
Abstract
This chapter discusses various types of material fracture toughness and the methods by which they are determined. It begins with a review of the basic principles of linear elastic fracture mechanics, covering the Griffith-Irwin theory of fracture, the concept of strain energy release rate, the use of fracture indices and failure criteria, and the ramifications of crack-tip plasticity in ductile and brittle fractures. It goes on to describe the different types of plain-strain and plane-stress fracture toughness, explaining how they are measured and how they are influenced by metallurgical and environmental variables and loading conditions. It also examines the crack growth resistance curves of several aluminum alloys and describes the characteristics of fracture when all or some of the applied load is in the plane of the crack.
Image
in Introduction to Fatigue and Fracture
> Fatigue and Fracture<subtitle>Understanding the Basics</subtitle>
Published: 01 November 2012
Fig. 6 General plot of the ratios of the toughness and stress showing the relationship between linear elastic fracture mechanics and strength of materials as it relates to fracture and structural integrity. Source: Ref 5
More
Image
in Evaluation of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 17.49 Concept for combining SCC thresholds obtained on smooth and linear elastic fracture mechanics specimens to yield a conservative assessment of materials. (1) Minimum stress at which small tensile specimens fail by SCC when stressed in environment of interest. (2) Minimum stress
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610101
EISBN: 978-1-62708-303-4
... upon crack extension is the driving force for fracture in a cracked material under load. This chapter provides a summary of Griffith’s work and the subsequent development of linear elastic and elastic-plastic fracture mechanics. It includes detailed illustrations and examples, familiarizing readers...
Abstract
Fracture mechanics is the science of predicting the load-carrying capabilities of cracked structures based on a mathematical description of the stress field surrounding the crack. The fundamental ideas stem from the work of Griffith, who demonstrated that the strain energy released upon crack extension is the driving force for fracture in a cracked material under load. This chapter provides a summary of Griffith’s work and the subsequent development of linear elastic and elastic-plastic fracture mechanics. It includes detailed illustrations and examples, familiarizing readers with the steps involved in determining strain energy release rates, stress intensity factors, J-integrals, R-curves, and crack tip opening displacement parameters. It also covers fracture toughness testing methods and the effect of measurement variables.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860269
EISBN: 978-1-62708-348-5
... on an explanation of the technology, a review of fracture mechanics testing methods, and a discussion of the many factors contributing to the fracture behavior of materials at cryogenic temperatures. 8.2 Linear Elastic Fracture Mechanics This section states the fundamental ideas underlying the foundation...
Abstract
This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540431
EISBN: 978-1-62708-309-6
..., and linear elastic fracture mechanics, this method sul de stress cracking. applies to very ductile material (or induced ductility as a result of stress state or tempera- equiaxed grain structure. An alloy structure in ture) that exhibits excessive yielding at the which the grains have approximately the same...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
... cracking and thus should be considered when predicting useful product life. brittle fracture fatigue cycles linear elastic fracture mechanics material defects stress intensity structural design IT IS OFTEN STATED that history repeats itself. Yet, when it comes to the failure of structural...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.9781627083096
EISBN: 978-1-62708-309-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240221
EISBN: 978-1-62708-251-8
... and maturity of linear elastic fracture mechanics, the notch toughness characteristics of low- and intermediate-strength steels were determined primarily by notched bar impact testing. The purpose of these tests is to determine the temperature at which a normally ductile failure transitions to a brittle...
Abstract
Fracture is the separation of a solid body into two or more pieces under the action of stress. Fracture can be classified into two broad categories: ductile fracture and brittle fracture. Beginning with a comparison of these two categories, this chapter discusses the nature and causes of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions to a brittle failure. The discussion then covers the Griffith theory of brittle fracture and the formulation of fracture mechanics. Procedures for determination of the plane-strain fracture toughness are subsequently covered. Finally, the chapter describes the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180197
EISBN: 978-1-62708-256-3
...; made of a number of parallel plates or sheets. Usually applied to microstructures. The most common lamellar microstructure is pearlite in ferrous metals. lateral. In a sideways direction. lattice, lattice structure. Same as cell. linear elastic fracture mechanics. A method of fracture analysis that can...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.9781627082563
EISBN: 978-1-62708-256-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630281
EISBN: 978-1-62708-270-9
.... Platelike; made of a number of parallel plates or sheets. Usually applied to microstructures. The most common lamellar microstructure is pearlite in ferrous metals. lateral. In a sideways direction. lattice, lattice structure. Same as cell. linear-elastic fracture mechanics. A method of fracture analysis...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540281
EISBN: 978-1-62708-309-6
... mechanics time-dependent crack growth THE CONCEPT OF LINEAR-ELASTIC FRACTURE MECHANICS (LEFM) assumes that the stress-intensity factor K is a valid fracture index and that the material behaves in a “brittle” manner. As a rule of thumb, the applicability of Eq 4.2(b) is limited to a crack-tip...
Abstract
Large-scale yielding at the crack tip and time-dependent crack growth mechanisms, such as stress relaxation due to creep, are nonlinear behaviors requiring nonlinear analysis methods. This chapter presents two such methods, one based on elastic-plastic fracture mechanics, the other on time-dependent fracture mechanics. It also introduces two new fracture indices, the J-integral for handling large-scale yielding and the C*-integral for creep crack growth, providing close-form and handbook solutions for each.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060149
EISBN: 978-1-62708-261-7
... that contains them can have a pronounced effect on the response of the material to applied loads. The impact that defects have on the load-carrying capacity of materials can be evaluated by using an important and powerful engineering tool known as linear elastic fracture mechanics (LEFM). Consider...
Abstract
This chapter explains how metallography and hardness testing are used to evaluate the quality and condition of metal products. It also discusses the use of tensile testing, fracture toughness and impact testing, fatigue testing, and nondestructive test methods including ultrasonic, x-ray, and eddy current testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090367
EISBN: 978-1-62708-266-2
... on different mechanical approaches emerged. One technique tests and analyzes statically loaded, mechanically precracked test specimens by using linear elastic fracture mechanics concepts. The second technique consists of constant (slow)-strain-rate tests on smooth or precracked specimens. Laboratory testing...
Abstract
This chapter addresses the challenge of selecting an appropriate stress-corrosion cracking (SCC) test to evaluate the serviceability of a material for a given application. It begins by establishing a generic model in which SCC is depicted in two stages, initiation and propagation, that further subdivide into several zones plus a transition region. It then discusses SCC test standards before describing basic test objectives and selection criteria. The chapter explains how to achieve the required loading conditions for different tests and how to prepare test specimens to determine elastic strain, plastic strain, and residual stress responses. It also describes the difference between smooth and precracked specimens and how they are used, provides information on slow-strain-rate testing and how to assess the results, and discusses various test environments and procedures, including tests for weldments. The chapter concludes with a section on how to interpret time to failure, threshold stress, percent survival, stress intensity, and propagation rate data, and assess the precision of the associated tests.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.9781627083553
EISBN: 978-1-62708-355-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780211
EISBN: 978-1-62708-281-5
... elastic fracture toughness, testing of thin sheets and films, normalization methods, and hysteresis methods. fracture resistance testing polymers linear elastic fracture toughness J-integral testing thin sheets thin films normalization methods hysteresis methods POLYMERIC MATERIALS...
Abstract
This article briefly describes the historical development of fracture resistance testing of polymers and reviews several test methods developed for determining the fracture toughness of polymeric materials. The discussion covers J-integral testing, the methods for determining linear elastic fracture toughness, testing of thin sheets and films, normalization methods, and hysteresis methods.
1