Skip Nav Destination
Close Modal
Search Results for
life fraction rule
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 169 Search Results for
life fraction rule
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 1989
Fig. 3.8. Comparison of actual rupture life with predictions from life-fraction rule for 2¼Cr-1Mo steel ( Ref 53 ).
More
Image
in Strain-Range Partitioning—Concepts and Analytical Methods
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 3.24 Example set of strain-range partitioning life relationships for comparison of the Life Fraction Rule and the Interaction Damage Rule
More
Image
in Strain-Range Conversion—An Extended View of Strain-Range Partitioning
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 4.6 Comparison of experimental results for critical experiments with calculations by (a) Strain Range Conversion and (b) the Life Fraction Rule. Source: Ref 4.1
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
... = 100 cycles to failure Fig. 3.24 Example set of strain-range partitioning life relationships for comparison of the Life Fraction Rule and the Interaction Damage Rule Fig. 3.19 Summary of partitioned strain range vs. life relationships. (a) AISI type 316 stainless steel in air at 705...
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
... removal Difficulty in using as a monitoring technique Validity of life-fraction rule Effects of oxidation and specimen size Uniaxial-to-multiaxial correlations Microstructural evaluation: Cavitation measurement Carbide-coarsening measurements Lattice parameter Ferrite chemistry analysis...
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
... to determine the expended lives of components under creep, fatigue, and creep-fatigue conditions. Plant records and the time-temperature histories of components are reviewed during the procedure. The creep or creep-fatigue life fraction consumed is calculated using assumed material properties and damage rules...
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
... 0.0979 . . . . . . . . . C g 0.73 0 Summary of creep-fatigue life prediction models Table A8.1 Summary of creep-fatigue life prediction models Type Acronym Title Ref A: Life or damage fraction rules A LCR Linear Creep-Rupture Damage Rule 8.34 A LCF Linear...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870123
EISBN: 978-1-62708-344-7
... Basis of model Ref. No. (year) LDR, Miner’s (a) (linear damage rule) Damage accumulates identically at all life levels. Cycle fractions sum to 1.0 at failure at all life levels. See Eq 6.1 . Ref 6.4 (1945) DLDR, Manson et al. (double linear damage rule) Physical size crack (function...
Abstract
This chapter addresses the cumulative effects of fatigue and how to determine its impact on component lifetime and performance. It begins by defining a loading history and its corresponding hysteresis loops that exposes the deficiencies of some of the theories discussed. It then proceeds to demonstrate the methods commonly used to analyze cumulative fatigue damage and its effect on component life starting with the classical linear damage rule. After pointing out the inherent limitations of the model, it presents a method that incorporates two linear damage rules, one applying prior to crack initiation and the other after the crack has started. Although the method accounts somewhat better for loading-order effects, the transition in behavior that the rules presume to model occurs prior to any signs of cracking. Two modified versions of the double linear damage rule method, neither of which are related to a physical crack initiation event, are subsequently presented along with several applications showing how the different methods compare. The examples provided include two-level and multilevel tests, a gas-turbine engine compressor disk, and the cumulative damage associated with the irreversible hardening of type 304 stainless steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060069
EISBN: 978-1-62708-343-0
.... 4.6 Comparison of experimental results for critical experiments with calculations by (a) Strain Range Conversion and (b) the Life Fraction Rule. Source: Ref 4.1 Fig. 4.7 Hysteresis loops and strain history in strain-range conversion experiments involving unequal strain ranges of one...
Abstract
This chapter demonstrates the versatility of the strain-range partitioning method and its application to creep-fatigue problems involving complex loading histories. It begins with a derivation showing that it is possible to assess the damage of hysteresis loops combining two or more strain ranges using generic loops based on fundamental data. It then explains how to treat problems involving sequential loading with both healing and damage cycles and presents a general solution for combining two loops with arbitrary amounts of the four strain-range components. The chapter also derives closed-form equations that account for interactions among any number of adjacent loops and can be used, through successive application, to analyze any loading history.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490111
EISBN: 978-1-62708-340-9
...¼Cr-1Mo steel ( Ref 38 ). Fig. 4.17. Effects of hold time and prior creep damage (0.2 and 0.6 life fractions) on cyclic endurance of 1Cr-½Mo steel ( Ref 39 ). Fig. 4.18. Effect of tensile hold time on fatigue endurance of type 316 stainless steel ( Ref 41 ). Fig. 4.19...
Abstract
This chapter describes the phenomenological aspects of fatigue and how to assess its effect on the life of components operating in high-temperature environments. It explains how fatigue is measured and expressed and how it is affected by loading conditions (stress cycles, amplitude, and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates the use of tools and techniques that have been developed to quantify fatigue-related damage and its effect on the remaining life of components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490183
EISBN: 978-1-62708-340-9
... 39 ). Fig. 5.21. Evolution of creep-cavitation damage with expended life fraction for ferritic steels ( Ref 12 ). Fig. 5.22. Evolution of creep-cavitation damage with expended life fraction for 1Cr-½Mo steels tested at 550 °C (1020 °F) ( Ref 42 ). Fig. 5.23. Correlation...
Abstract
This chapter covers the failure modes and mechanisms associated with boiler components and the tools and techniques used to assess damages and predict remaining component life. It begins with a review of the design and operation of a utility boiler and the materials used in construction. It then describes the various causes of failure in boiler tubes, headers, and steam pipes, explaining how and why they occur, how they are diagnosed, and how to mitigate their effects. The final and by far largest section in the chapter is a tutorial on damage and life assessment techniques for boiler components and assemblies. It demonstrates the use of various methods, including analytical techniques that estimate life expenditure based on operating history, component geometry, and material properties; predictive methods based on the extrapolation of failure statistics; methods that predict life based on dimensional measurements; methods based on metallographic studies; methods based on temperature estimates; and a method for estimating remaining life under creep conditions based on stress-rupture testing of service-exposed material samples. The chapter also discusses the use of fracture mechanics and presents a number of cases in which life assessments are made based on the integration of several methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
... Prediction of thermal-fatigue life essentially involves a calculation of the life expended using damage rules for a set of assumed or recorded thermal-history and material data. A variety of damage rules that are commonly used and the procedures for calculating expended life fraction were described...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490265
EISBN: 978-1-62708-340-9
... cylinder-surface thermal strain, used for calculating nominal thermal strain range on surfaces of turbine rotors ( Ref 22 ). Fig. 6.18. Plastic strain-concentration factors for low-alloy steels ( Ref 41 ). Fig. 6.20. Evolution of creep-cavitation with creep-life fraction expended for Cr...
Abstract
This chapter covers the failure modes and mechanisms of concern in steam turbines and the methods used to assess remaining component life. It provides a detailed overview of the design considerations, material requirements, damage mechanisms, and remaining-life-assessment methods for the most-failure prone components beginning with rotors and continuing on to casings, blades, nozzles, and high-temperature bolts. The chapter makes extensive use of images, diagrams, data plots, and tables and includes step-by-step instructions where relevant.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060231
EISBN: 978-1-62708-343-0
.... 10.6 Maximum total strain range of 1.6% induced at root radius of the notched pilot rib of the High-Pressure Oxidizer Turbopump second-stage disk by complete thermal cycle for a root radius of 0.75 mm (0.030 in.) Fig. 10.9 Histogram showing fractional fatigue crack-initiation life used...
Abstract
This chapter explains how the authors assessed the potential risks of creep-fatigue in several aerospace applications using the tools and techniques presented in earlier chapters. It begins by identifying the fatigue regimes encountered in the main engines of the Space Shuttle. It then describes the types of damage observed in engine components and the methods used to mitigate problems. It also discusses the results of analyses that led to changes in design or approach and examines fatigue-related issues in turbine engines used in commercial aircraft.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060155
EISBN: 978-1-62708-343-0
...: Ref 7.1 Fig. 7.9 Applicability of strain-range partitioning multiaxiality rules to prediction of Zamrik’s ( Ref 7.9 ) torsional creep-fatigue lives for AISI type 304 stainless steel at 650 °C (1200 °F). (a) Life relationships based on axial creep-fatigue data for AISI type 316 stainless...
Abstract
This chapter addresses the question of how to deal with multiaxial stresses and strains when using the strain-range partitioning method to analyze the effects of creep fatigue. It is divided into three sections: a general discussion on the rationale used in formulating rules for treating multiaxiality, a concise listing of the rules, and an example problem in which axial creep-fatigue data is used to predict the torsional creep-fatigue life of type 304 and 316 stainless steel. The chapter also includes a brief introduction in which the authors outline the challenges presented by multiaxial loading and set practical limits on the problem they intend to treat.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870009
EISBN: 978-1-62708-344-7
... of a simple loop for a three-element model with displacement “stops” Point on Fig. 2.16 Applied load P (lb) Actual displacement, lb Fraction of allowable displacements Total I II III I II III 0 0 0 0 0 0 0 0 0 A +2000 1.0 1.0 0 0 1.0 0 0 B +3000 2.5 1.0 1.5...
Abstract
This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares and contrasts the response patterns of such materials, explaining how the movement of dispersed particles and dislocations influences their behavior. It then examines the behavior of materials under uniaxial strain reversals of varying amplitude and explains how to construct double-amplitude stress-strain curves that account for complex straining histories. For special cases, those involving complex materials such as gray cast iron or highly complex straining patterns, the chapter presents other methods of analysis, including the rainflow cycle counting method, mechanical modeling based on displacement-limited elements, Wetzel’s method, and deformation modeling. It also explains the difference between force cycling and stress cycling and presents alternate techniques for predicting whether a material will become harder or softer in response to strain cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
... Discussion Concluding Remarks on TS-SRP Assessment of Predictability of TS-SRP for TMF Cycling Correlation between Partitioned Strain Fraction and Hold-Time Isothermal Fatigue Correlations between Stress and Hold-Time A Program to Apply TS-SRP Life Prediction of TMF Summary of TS-SRP...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870001
EISBN: 978-1-62708-344-7
..., involving successive cycling of varying amplitude is treated next. Specific rules for material behavior are first provided without detailed proof, so an analyst can proceed expeditiously without being burdened by too many theoretical considerations. However, more detailed analysis is provided later...
Abstract
This chapter gives a brief overview of the role of fatigue in component failures. It presents examples of fatigue failures along with statistics on the causes and costs of fatigue damage in various industries. It also includes a chapter-by-chapter summary of the content in the book, noting that the book deals primarily with fatigue at temperatures below the creep range with high-temperature fatigue being treated in a companion publication.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780051
EISBN: 978-1-62708-281-5
... or replacing a product formerly made of another material, have four major concerns ( Ref 1 ): Designing products that can be built as easily and economically as possible Ensuring product reliability Simplifying product maintenance and extending product life Ensuring timely delivery of materials...
Abstract
To ensure the proper application of plastics, one must keep in mind three factors that determine the appropriate end-use: material selection, processing, and design. This article begins by providing information on various factors pertinent to the anticipated use conditions of the article to be designed. This is followed by a discussion on several stages necessary to define the geometry of plastic parts. Details on the strength of and cost estimation for plastic parts are then provided. The article ends with a section providing information on the structure, properties, processing, and end-use applications of plastics.