Skip Nav Destination
Close Modal
Search Results for
levy-mises equations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6 Search Results for
levy-mises equations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400053
EISBN: 978-1-62708-316-4
... and how hardening laws are used to predict strain-hardening behaviors. elastic strain levy-mises equations plastic deformation sheet metal forming strain hardening strain rate WHEN A MATERIAL is deformed, two types of deformation occur: elastic and plastic. Elastic deformation is always...
Abstract
The design and optimization of sheet metal forming operations is aided by tools and techniques that have been developed and refined over several decades. This chapter covers many of these methods and practices and explains where and how they are used. It begins by showing how the stress state at any point in a material can be expressed in different ways for different purposes. It then compares and contrasts some of the more widely used yield criteria and demonstrates the use of flow rules. It also explains how to calculate power, energy, and effective strain and strain rate and how hardening laws are used to predict strain-hardening behaviors.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230001
EISBN: 978-1-62708-351-5
... effectively rigid components increases with the width-to-thickness ratio of the interface. In accordance with the von Mises criterion, the pressure is ( 2 / 3 ) σ s for a width-to-thickness ratio of 1:1, and nearly six times this value for a ratio of 20:1, where σ s is the yield stress...
Abstract
Brazing and soldering jointly represent one of several methods for joining solid materials. This chapter summarizes the principal characteristics of the various joining methods. It then discusses key parameters of brazing including surface energy and tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials, new phase formations, significance of the joint gap, and the strength of metals. The chapter also describes issues in processing aspects that must be considered when designing a joint, and the health, safety, and environmental aspects of brazing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.9781627083515
EISBN: 978-1-62708-351-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870123
EISBN: 978-1-62708-344-7
..., they did not provide quantitative equations. Others have also explored this approach, including us. In 1981 ( Ref 6.17 ) we proposed a relation in the form: (Eq 6.4) D = ( 1 0.18 ) [ α ο + ( 0.18 ) − α ο ( n N ) ( 2 / 3 ) N 0.4...
Abstract
This chapter addresses the cumulative effects of fatigue and how to determine its impact on component lifetime and performance. It begins by defining a loading history and its corresponding hysteresis loops that exposes the deficiencies of some of the theories discussed. It then proceeds to demonstrate the methods commonly used to analyze cumulative fatigue damage and its effect on component life starting with the classical linear damage rule. After pointing out the inherent limitations of the model, it presents a method that incorporates two linear damage rules, one applying prior to crack initiation and the other after the crack has started. Although the method accounts somewhat better for loading-order effects, the transition in behavior that the rules presume to model occurs prior to any signs of cracking. Two modified versions of the double linear damage rule method, neither of which are related to a physical crack initiation event, are subsequently presented along with several applications showing how the different methods compare. The examples provided include two-level and multilevel tests, a gas-turbine engine compressor disk, and the cumulative damage associated with the irreversible hardening of type 304 stainless steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390325
EISBN: 978-1-62708-459-8
... T is the temperature difference between workpiece and tooling. Equation (11.6) was shown to agree with experimental measurements [ 25 , 26 ], but can be difficult to apply because the lubricant film thickness must be known. As shown by Eq. (11.7) , the heat loss increases with increasing...
Abstract
Forging is a deformation process achieved through the application of compressive stresses. During the stroke, pressures and velocities are continuously changing and the initial lubricant supply must suffice for the duration of the operation. Lubricant residues and pickup products also change with time, further complicating the analysis of friction and wear. This chapter provides a qualitative and quantitative overview of the mechanics and tribology of forging in all of its forms. It discusses the effects of friction, pressures, forces, and temperature on the deformation and flow of metals in open-die, closed-die, and impression-die forging and in back extrusion and piercing operations. It presents various ways to achieve fluid-film lubrication in upset forging processes and examines the cause of barreling, defect formation, and folding in the upsetting of cylinders, rings, and slabs. It also explains how to evaluate lubricants, friction, and wear under hot, cold, and warm forging conditions and how to extend die life and reduce defects when processing different materials.