Skip Nav Destination
Close Modal
Search Results for
laser-additive manufacturing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 224 Search Results for
laser-additive manufacturing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2012
Fig. 5.20 Laser-additive manufacturing process. (a) Powder feed stock is added by gas jets to the melt pool formed by laser. (b) Direct metal deposition of titanium foil shape. Courtesy of S. Kelly, Pennsylvania State University. Source: Ref 5.11
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.51 Ultimate tensile strength (UTS), yield strength (YS), and elongation of Ti-6Al-4V alloy produced using various additive manufacturing processes. DMD, direct-metal deposition; HIP, hot isostatic pressing; HT, heat treatment; LENS, laser-engineered net shaping ( Ref 8.16 ); DMLS
More
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780001
EISBN: 978-1-62708-268-6
... and manufactured by McDonnell Douglas. The MMS looks like a basketball ( Fig. 1.1 ) that sits on top of the helicopter blades. That basketball contains a television, a thermal imaging sensor, and a laser target designator and rangefinder. Pilots use the MMS for finding targets with either a television or infrared...
Abstract
This chapter focuses on what can cause a system to fail and addresses the challenge in approaching a system failure. It then examines the steps involved in the four-step problem-solving process: defining the problem, identifying all potential failure causes and evaluating the likelihood of each, identifying the potential solutions, and identifying the best solution. The chapter concludes by describing the responsibilities of a failure analysis team.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780183
EISBN: 978-1-62708-268-6
... level. Operating the laser at these levels decreased its reliability. The manufacturer and the customer tested the laser at reduced energy levels and found that this allowed the system to meet all performance requirements while simultaneously eliminating the reliability problem. The customer allowed...
Abstract
Corrective action means the implementation or modification of things designed to eliminate or reduce failure causes. This chapter addresses developing potential solutions and selecting the best solution. It discusses the special operations that should be used only as temporary or interim corrective actions to overcome design, process, and other failure causes. The chapter concludes by describing the process of corrective action implementation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460209
EISBN: 978-1-62708-285-3
... property change. Also, CGDS is more cost-effective than other metal-deposition AM technology, such as selective laser melting and direct metal deposition. Hence, numerous studies of the application of CGDS to AM technology have been conducted ( Ref 8.16 – 8.19 ). Figure 8.1 shows an example...
Abstract
This chapter discusses the application of high-pressure cold spray to the automotive industry field, with special attention to three applications: additive manufacturing, fabrication methods, and protective coatings. Various studies on the automotive application of cold spray are reviewed. The background and purpose of each application are presented and practical cases are discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500273
EISBN: 978-1-62708-317-1
..., the machines and equipment used, the process limits, advanced forming strategies, process simulation, and recent developments in the field of hybrid ISF, that is, process combinations of ISF with stretch forming and laser heating. Fig. 13.1 Various parts manufactured by incremental sheet forming. t...
Abstract
This chapter describes incremental sheet forming processes, including single-point, two-point, and kinematic (two tool) techniques. It provides information on the tooling and equipment used, work flow and forming parameters, process mechanics and forming limits. It also discusses multistage forming strategies, process modeling and simulation, and advanced hybrid forming processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110524
EISBN: 978-1-62708-247-1
... studies have shown the microloops to be concentrated within 15 µm of the facets [14] , as shown in figure 9 . Additional studies have compared aged lasers with unaged companion lasers. The aged lasers had been severely degraded during life testing. However, after cleaving off the near-facet regions...
Abstract
Optoelectronic components can be readily classified as active light-emitting components (such as semiconductor lasers and light emitting diodes), electrically active but non-emitting components, and inactive components. This chapter focuses on the first category, and particularly on semiconductor lasers. The discussion begins with the basics of semiconductor lasers and the material science behind some causes of device failure. It then covers some of the common failure mechanisms, highlighting the need to identify failures as wearout or maverick failures. The chapter also covers the capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110262
EISBN: 978-1-62708-247-1
... is particularly sensitive and is typically not shared with the foundry or external FA facilities. This means that the FA lab of a fabless design company is the only team equipped to do the most advanced EFI and PFA techniques, such as nodal analysis with a Laser Voltage Prober (LVP), which relies heavily...
Abstract
Over the revolutionary era of semiconductor technology, Computer-Aided Design Navigation (CADNav) tools have played an increasingly critical role in silicon debug and failure analysis (FA) in efforts to improve manufacturing yield while reducing time-to-market for integrated circuit (IC) products. This article encompasses the key principles of CADNav for various aspects of semiconductor FA and its importance for improved yield and profitability. An overview of the required input data and formats are described for both IC and package devices, along with key considerations and best practices recommended for fast fault localization, accurate root cause analysis, FA equipment utilization, efficient cross-team collaboration, and database management. Challenges with an FA lab ecosystem are addressed by providing an integrated database and software platform that enable design layout and schematic analysis in the FA lab for quick and accurate navigation and cross-tool collaboration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200133
EISBN: 978-1-62708-354-6
... in the metal casting field are Laminated Object Manufacturing (LOM) ( Figures 8-3 and 8-4 ), Fused Deposition Modeling (FDM), Stereolithography (SLA) ( Figure 8-5 ) and Selective Laser Sintering Process (SLS) ( Figures 8-6 and 8-7 ). These processes enable the building of complex, three-dimensional models...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250001
EISBN: 978-1-62708-345-4
... Carburizing Carbonitriding Nitriding Inspection Electrical Discharge Machining (EDM) Abrasive Water Jet Machining Forging Alternative or Nontraditional Gear Manufacturing Laser Machining Heat Treating <xref ref-type="bibr" rid="t51250001-ref3">(Ref 3)</xref> Prehardening...
Abstract
This chapter begins with a review of some of the terms used in the gear industry to describe the design of gears and gear geometries. It then discusses the types of gears that operate on parallel shafts, intersecting shafts, and nonparallel and nonintersecting shafts. Next, the processes involved in the selection of gear are discussed, followed by information on the basic stresses applied to a gear tooth, the strength of a gear tooth, and the most widely used gear materials. Further, the chapter briefly reviews gear manufacturing methods and the heat treating processing steps including prehardening processes, through hardening, and case hardening processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
... with advanced rapid prototyping methods to directly manufacture three-dimensional components. The approach is similar to rapid prototyping techniques, such as stereolithography and selective laser sintering. However, it is different in that a fully dense, high-integrity part is claimed to be made without...
Abstract
This chapter discusses some of the promising developments in the use of titanium, including titanium aluminides, titanium matrix composites, superplastic forming, spray forming, nanotechnology, and rapid solidification rate processing. It also reports on efforts to increase the operating temperature range of conventional titanium alloys and reduce costs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460173
EISBN: 978-1-62708-285-3
... be countered to a degree by additional cleaning of the mesh cloth with compressed air. Sieve analysis assumes that the particles to be measured have near-spherical shape, so particles with irregular or needlelike shape can distort the results. Laser diffraction is more advantageous in the range of very...
Abstract
Increasing growth of high-pressure cold spraying applications on the industrial scale have forced global powder producers to face this challenge and develop specific powders for cold spray applications. This chapter provides information on the properties, classification, characteristics, manufacturing, and procedures for packaging of powders specific to cold spray applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
.... Another method of fabricating bulk HEAs is by additive manufacturing (AM) ( Ref 78 , 79 ). Recently, scientists fabricated HEAs by selective laser melting ( Ref 80 ), directed energy deposition ( Ref 81 ), electron beam melting ( Ref 82 ), binder jetting ( Ref 83 ), three-dimensional (3D) ink-extrusion...
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... is not subject to this constraint and therefore offers considerable flexibility in manufacturing operations. The term laser stands for light amplification by stimulated emission of radiation, and three different types of lasers have been developed: Nd:YAG (neodymium dissolved in yttrium aluminum garnet...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110001
EISBN: 978-1-62708-247-1
... type, common laboratory bench analyzers is sufficient to reveal the anomaly as well. Fault localization (FI) then interrogates the device using localization techniques, typically using photon or laser-based techniques, to isolate possible fail sites. Once the suspected locations are identified...
Abstract
This article introduces the wafer-level fault localization failure analysis (FA) process flow for an accelerated yield ramp-up of integrated circuits. It discusses the primary design considerations of a fault localization system with an emphasis on complex tester-based applications. The article presents examples that demonstrate the benefits of the enhanced wafer-level FA process. It also introduces the setup of the wafer-level fault localization system. The application of the wafer-level FA process on a 22 nm technology device failing memory test is studied and some common design limitations and their implications are discussed. The article presents a case study and finally introduces a different value-add application flow capitalizing on the wafer-level fault localization system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290079
EISBN: 978-1-62708-306-5
...-affected zones. Filler material from the GMAW process can provide alloying additions and joint filling that is not possible with autogenous laser welding. Although HLAW is a productive and advantageous welding process, precise alignment and strict part fit-up are required to maintain weld consistency...
Abstract
This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit welding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110499
EISBN: 978-1-62708-247-1
... with classical memory test systems, because the stability of a laser scanner is generally only guaranteed within a time of approximately 15 to 20min. A possible solution next to a use of a different test system is an additional instrumentation of a fast pin electronics that can handle DRAM output data...
Abstract
This article provides an introduction to the dynamic random access memory (DRAM) operation with a focus to localization techniques of the defects combined with some physical failure analysis examples and case studies for memory array failures. It discusses the electrical measurement techniques for array failure analysis. The article then presents know-how-based analysis techniques of array failures by bitmap classification. The limits of bitmapping that lead to well-known localization techniques like thermally induced voltage alteration and optical beam induced resistance change are also discussed. The article concludes by providing information on soft defect localization techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040277
EISBN: 978-1-62708-300-3
..., laser, PFS, PVD, TD-VC ORVAR Supreme High Medium Medium High Medium Ion nitriding, laser, PFS, PVD, TD-VC QRO Supreme High High High Very high Medium Ion nitriding, laser, PFS, PVD, TD-VC AerMet 100 Very high Low Low NA Medium Laser, PFS, PVD, TD-VC Matrix 11 Medium Very...
Abstract
This chapter discusses the factors that affect die steel selection for hot forging, including material properties such as hardenability, heat and wear resistance, toughness, and resistance to plastic deformation and mechanical fatigue. It then describes the relative merits of various materials and the basic requirements for cold forging dies. The chapter also covers die manufacturing processes, such as high-speed and hard machining, electrodischarge machining, and hobbing, and the use of surface treatments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110603
EISBN: 978-1-62708-247-1
... such as spelling mistakes, different marking techniques used (e.g., laser marking instead of ink marking); dual part markings; part markings with invalid date codes or part numbers; parts (ink-marked) failing marking permanency tests; a filled-in or unclean pin-1cavity; die markings (date code, manufacturer...
Abstract
Most of the counterfeit parts detected in the electronics industry are either novel or surplus parts or salvaged scrap parts. This article begins by discussing the type of parts used to create counterfeits. It discusses the three most commonly used methods used by counterfeiters to create counterfeits. These include relabeling, refurbishing, and repackaging. The article presents a systematic inspection methodology that can be applied for detecting signs of possible part modifications. The methodology consists of external visual inspection, marking permanency tests, and X-ray inspection followed by material evaluation and characterization. These processes are typically followed by evaluation of the packages to identify defects, degradations, and failure mechanisms that are caused by the processes (e.g., cleaning, solder dipping of leads, reballing) used in creating counterfeit parts.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550223
EISBN: 978-1-62708-307-2
..., Ti-5Al-2Sn-2Zr-4Mo-4Cr, and Ti-6Al-2Sn-4Zr-6Mo are some alloys used in gas turbine engine applications. Aerospace Pressure Vessels Aerospace pressure vessels similarly require optimized strength efficiency in addition to auxiliary properties such as weldability and predictable fracture...
Abstract
Titanium is a lightweight metal used in a growing number of applications for its strength, toughness, stiffness, corrosion resistance, biocompatibility, and high-temperature operating characteristics. This chapter discusses the applications, metallurgy, properties, compositions, and grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors.
1