Skip Nav Destination
Close Modal
Search Results for
laser welds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 198 Search Results for
laser welds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 9.20 Martensite (a) in laths, in a laser-welded steel containing 0.13% C and (b) in plates (or twined) in laser welded steel containing 0.27% C. Courtesy G. Thewlis, reprinted with permission from Maney Publishing. Source: Ref 30
More
Image
Published: 01 July 1997
Fig. 8 S/N curves for laser-beam welds in 4 mm (0.16 in.) Ti-6Al-4V sheet produced at 2 and 4 m/min (0.6 and 1.2 ft/min). Tested in as-welded condition. Fracture initiated at weld undercut. Base metal properties are provided for comparative purposes. Source: Ref 42
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290079
EISBN: 978-1-62708-306-5
... Abstract This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit...
Abstract
This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit welding.
Image
Published: 01 November 2011
Image
Published: 01 November 2011
Fig. 4.13 Single-pass deep-penetration autogenous laser butt weld in 14 mm (9/16 in.) A-710 steel plate. Macrograph shows the high depth-to-width ratio of the weld bead and the limited size of the heat-affected zone. Source: Ref 4.8
More
Image
Published: 01 November 2011
Image
Published: 01 December 2000
Image
Published: 01 July 1997
Fig. 1 Macrograph showing columnar beta grains in a Ti-6Al-4V laser-beam weld. 13×. Courtesy of The Welding Institute
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700215
EISBN: 978-1-62708-279-2
... behavior of AHSS and could seriously affect the structural performance of AHSS components. The ASP led a project to study the welding performance of AHSS for auto body structural components. Five fusion welding processes (MIG pulse/ac, MIG pulse/dc, MIG/laser-assisted, laser, and laser plasma) were...
Abstract
This chapter briefly reviews the experience-based guidelines that were developed for forming and welding advanced high-strength steels (AHSS). It discusses the benefits of using HSS in car body structures and components that are analyzed by the performance indices developed for materials selection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... Abstract This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310201
EISBN: 978-1-62708-286-0
... for the carbides to have formed. This is avoided only in thin-gauge (>1.5 mm, 0.06 in.) material or when the HAZ is drastically reduced, as in laser welding. The high thermal expansion of austenitic stainless steel can cause high residual stress around welds, which may require annealing to eliminate...
Abstract
This chapter provides a basis for understanding the influence of stainless steel alloy composition and metallurgy on the welding process, which involves complex dynamics associated with melting, refining, and thermal processing. It begins with an overview of the welding characteristics of the categories of stainless steels, namely austenitic, duplex, ferritic, martensitic, and precipitation-hardening stainless steels. This is followed by a discussion of the selection criteria for materials to be welded. Various welding processes used with stainless steel are then described. The chapter ends with a section on some of the practices to ensure safety and weld quality.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290061
EISBN: 978-1-62708-306-5
... welding, compared with resistance spot welding, projection welding, and laser welding, are: Gas-tight or liquid-tight joints can be produced (not possible with spot welding or projection welding). Seam width may be less than the diameter of spot welds, because the electrode contour can...
Abstract
Resistance welding is a group of processes in which the heat for welding is generated by the resistance to the flow of an electrical current through the parts being joined. This chapter discusses the processes, advantages, and limitations of specific resistance welding processes, namely resistance spot welding, resistance seam welding, projection welding, flash welding, and upset welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... weld of alpha-beta alloy Ti-6Al-4V. (a) 10×. (b) 240× Fig. 9.2 Macrograph showing columnar beta grains in a Ti-6Al-4V laser beam weld. 13× Fig. 9.3 Macrograph showing coarse prior-beta grain size in weld metal of an electron beam-welded Ti-6Al-4V forging Fig. 9.4...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930197
EISBN: 978-1-62708-359-1
... of service failures. The discussion covers various factors that may lead to the failure of arc welds, electroslag welds, electrogas welds, resistance welds, flash welds, upset butt welds, friction welds, electron beam welds, and laser beam welds. corrosion deformation fracture inspection mechanical...
Abstract
Weldment failures may be divided into two classes: those identified during inspection and mechanical testing and those discovered in service. Failures in service arise from fracture, wear, corrosion, or deformation. In this article, major attention is directed toward the analysis of service failures. The discussion covers various factors that may lead to the failure of arc welds, electroslag welds, electrogas welds, resistance welds, flash welds, upset butt welds, friction welds, electron beam welds, and laser beam welds.
Image
Published: 01 August 1999
Fig. 11.28 (Part 4) (h) Progression of the weld pool during butt welding with a high-energy beam. Applies specifically to welding with a laser beam, but applies equally to electron-beam welding.
More
Image
Published: 01 December 2000
Fig. 12.32 Effect of welding processes on fatigue crack growth rate of longitudinally oriented titanium alloys. (a) Ti-6Al-4V alpha-beta alloy. (b) Ti-15V-3Cr-3Al-3Sn beta alloy. GTAW, gas-tungsten arc welding; EBW, electron beam welding; LBW, laser beam welding
More
Image
Published: 01 July 1997
Fig. 6 Fatigue crack growth in laser beam weldments of Ti-6Al-4V both without and with a postweld stress relief treatment of 4.5 h at 625 °C (1160 °F). (a) Fatigue crack growth parallel to weld. (b) Fatigue crack growth perpendicular to weld. These data suggest that residual stresses
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700225
EISBN: 978-1-62708-279-2
... types of vehicles. Other manufacturing processes such as roll forming, hot forming, and tube hydroforming are also used. Incoming sheet materials for such processes come in one of these forms: Sheet blank Sheet coil Laser welded blank Laser welded coil Flexible (tailor) rolled...
Abstract
The increased use of advanced high-strength steels to achieve weight reduction in automobiles has led to the development of innovative tool designs and manufacturing processes. Among these technologies and processes are: real-time process control, active drawbeads, active binders, flexible binders, and flexible rolling. This chapter presents the implementation, advantages, disadvantages, and applications of these processes and technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700177
EISBN: 978-1-62708-279-2
... are combined at their contacting surfaces by the application of heat and/or pressure. Welding processes are divided into two main categories: Fusion welding , such as arc welding, resistance spot welding, oxyfuel gas welding, electron beam welding, and laser beam welding Solid-state welding...
Abstract
This chapter describes the nature of the problems arising from using advanced high-strength steels (AHSS) and discusses potential remedies to minimize the adverse effects that may limit the adoption of AHSS in the automotive industry. The discussion provides information on press energy, springback, residual stress, die wear, hot forming, downgaging limits, welding, binders, draw beads, and tool material wear.
Image
Published: 01 July 1997
Fig. 3 G - R diagram for different solidification processes with columnar growth structures. The G and R values are indicative only and represent orders of magnitude. For welding and laser treatment only one process is represented with conditions prevailing during the solidification
More
1