Skip Nav Destination
Close Modal
By
Felix Beaudoin, Edward Cole, Jr.
Search Results for
laser beam
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 235
Search Results for laser beam
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2013
Image
Published: 01 November 2011
Image
Thermal gradients induced at a thermocouple as a function of the laser beam...
Available to PurchasePublished: 01 November 2019
Image
Macrograph showing columnar beta grains in a Ti-6Al-4V laser-beam weld. 13×...
Available to PurchasePublished: 01 July 1997
Fig. 1 Macrograph showing columnar beta grains in a Ti-6Al-4V laser-beam weld. 13×. Courtesy of The Welding Institute
More
Image
Fatigue crack growth in laser beam weldments of Ti-6Al-4V both without and ...
Available to PurchasePublished: 01 July 1997
Fig. 6 Fatigue crack growth in laser beam weldments of Ti-6Al-4V both without and with a postweld stress relief treatment of 4.5 h at 625 °C (1160 °F). (a) Fatigue crack growth parallel to weld. (b) Fatigue crack growth perpendicular to weld. These data suggest that residual stresses
More
Image
Published: 01 July 1997
Fig. 8 S/N curves for laser-beam welds in 4 mm (0.16 in.) Ti-6Al-4V sheet produced at 2 and 4 m/min (0.6 and 1.2 ft/min). Tested in as-welded condition. Fracture initiated at weld undercut. Base metal properties are provided for comparative purposes. Source: Ref 42
More
Image
Schematic of decrease in reflected intensity (normalized) of a laser beam i...
Available to PurchasePublished: 01 March 2006
Fig. 10.6 Schematic of decrease in reflected intensity (normalized) of a laser beam impinged at an angle to the surface of a metal being fatigued
More
Image
Macrograph showing columnar beta grains in a Ti-6Al-4V laser beam weld. 13×...
Available to PurchasePublished: 01 December 2000
Image
Laser beam heating of titanium steel, and aluminum, showing melt depth vers...
Available to PurchasePublished: 01 December 2000
Fig. 10.4 Laser beam heating of titanium steel, and aluminum, showing melt depth versus beam sweep speed
More
Image
SSPVM system schematic; two laser beams (red arrows) that are orthogonal to...
Available to Purchase
in Scanning Probe Microscopy for Nanoscale Semiconductor Device Analysis
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 27 SSPVM system schematic; two laser beams (red arrows) that are orthogonal to each other, converge at the sample beneath the probe tip.
More
Image
Schematic of the effects of laser and electron beam heating, melting, and s...
Available to PurchasePublished: 01 January 1998
Fig. 16-16 Schematic of the effects of laser and electron beam heating, melting, and solidification. Source: Ref 63
More
Image
Schematic diagram of the effects of laser- and electron beam heating, melti...
Available to PurchasePublished: 01 January 2015
Fig. 22.14 Schematic diagram of the effects of laser- and electron beam heating, melting, and solidification. Source: Ref 22.53
More
Book Chapter
Other Fusion Welding Processes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290079
EISBN: 978-1-62708-306-5
... Abstract This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit...
Abstract
This chapter discusses the fusion welding processes, namely oxyfuel gas welding, oxyacetylene braze welding, stud welding (stud arc welding and capacitor discharge stud welding), high-frequency welding, electron beam welding, laser beam welding, hybrid laser arc welding, and thermit welding.
Book Chapter
Failure Analysis of Weldments
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930197
EISBN: 978-1-62708-359-1
... of service failures. The discussion covers various factors that may lead to the failure of arc welds, electroslag welds, electrogas welds, resistance welds, flash welds, upset butt welds, friction welds, electron beam welds, and laser beam welds. corrosion deformation fracture inspection mechanical...
Abstract
Weldment failures may be divided into two classes: those identified during inspection and mechanical testing and those discovered in service. Failures in service arise from fracture, wear, corrosion, or deformation. In this article, major attention is directed toward the analysis of service failures. The discussion covers various factors that may lead to the failure of arc welds, electroslag welds, electrogas welds, resistance welds, flash welds, upset butt welds, friction welds, electron beam welds, and laser beam welds.
Book Chapter
Properties of Titanium-Alloy Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... Abstract This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Book Chapter
Physics of Laser-Based Failure Analysis
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110196
EISBN: 978-1-62708-247-1
.... The thermal stimulus examples are Optical Beam-Induced Resistance Change/Thermally-Induced Voltage Alteration and Seebeck Effect Imaging. Lastly, the article discusses the application of solid immersion lenses to improve spatial resolution. laser-based failure analysis photocurrent techniques scanning...
Abstract
This article reviews the basic physics behind active photon injection for local photocurrent generation in silicon and thermal laser stimulation along with standard scanning optical microscopy failure analysis tools. The discussion includes several models for understanding the local thermal effects on metallic lines, junctions, and complete devices. The article also provides a description and case study examples of multiple photocurrent and thermal injection techniques. The photocurrent examples are based on Optical Beam-Induced Current and Light-Induced Voltage Alteration. The thermal stimulus examples are Optical Beam-Induced Resistance Change/Thermally-Induced Voltage Alteration and Seebeck Effect Imaging. Lastly, the article discusses the application of solid immersion lenses to improve spatial resolution.
Book Chapter
Surface Engineering to Change the Surface Metallurgy
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350087
EISBN: 978-1-62708-315-7
... Abstract This chapter discusses surface engineering treatments, including flame hardening, induction hardening, high-energy beam hardening, laser melting, and shot peening. It describes the basic implementation of each method, the materials for which they are suited, and their effect on surface...
Abstract
This chapter discusses surface engineering treatments, including flame hardening, induction hardening, high-energy beam hardening, laser melting, and shot peening. It describes the basic implementation of each method, the materials for which they are suited, and their effect on surface metallurgy.
Image
Progression of the weld pool during butt welding with a high-energy beam. A...
Available to PurchasePublished: 01 August 1999
Fig. 11.28 (Part 4) (h) Progression of the weld pool during butt welding with a high-energy beam. Applies specifically to welding with a laser beam, but applies equally to electron-beam welding.
More
Image
Effect of welding processes on fatigue crack growth rate of longitudinally ...
Available to PurchasePublished: 01 December 2000
Fig. 12.32 Effect of welding processes on fatigue crack growth rate of longitudinally oriented titanium alloys. (a) Ti-6Al-4V alpha-beta alloy. (b) Ti-15V-3Cr-3Al-3Sn beta alloy. GTAW, gas-tungsten arc welding; EBW, electron beam welding; LBW, laser beam welding
More
Book Chapter
Systems Failure Analysis Introduction
Available to PurchaseBook: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780001
EISBN: 978-1-62708-268-6
... producing and delivering MMS systems to the U.S. Army for years. Prior to actually going to war, however, the Army decided to thoroughly wring out its MMS systems. During pre-combat testing, the Army found that the laser beam was misaligned enough to induce a miss, and this condition existed on all of its...
Abstract
This chapter focuses on what can cause a system to fail and addresses the challenge in approaching a system failure. It then examines the steps involved in the four-step problem-solving process: defining the problem, identifying all potential failure causes and evaluating the likelihood of each, identifying the potential solutions, and identifying the best solution. The chapter concludes by describing the responsibilities of a failure analysis team.
1