Skip Nav Destination
Close Modal
Search Results for
joining
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 657 Search Results for
joining
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480265
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the various methods used to join titanium alloy assemblies, focusing on welding processes and procedures. It explains how welding alters the structure and properties of titanium and how it is influenced by composition, surface qualities, and other factors...
Abstract
This chapter discusses the various methods used to join titanium alloy assemblies, focusing on welding processes and procedures. It explains how welding alters the structure and properties of titanium and how it is influenced by composition, surface qualities, and other factors. It describes several welding processes, including arc welding, resistance welding, and friction stir welding, and addresses related issues such as welding defects, quality control, and stress relieving. The chapter also covers mechanical fastening techniques along with adhesive bonding and brazing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500289
EISBN: 978-1-62708-317-1
... Abstract This chapter describes joining by forming processes including riveting, clinching, crimping, and dieless joining techniques. It also discusses the fatigue behavior of clinched joints and the results of fatigue tests that compare clinched and spot welded joints. clinching...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290001
EISBN: 978-1-62708-306-5
... Abstract Joining comprises a large number of processes used to assemble individual parts into a larger, more complex component or assembly. The selection of an appropriate design to join parts is based on several considerations related to both the product and the joining process. Many product...
Abstract
Joining comprises a large number of processes used to assemble individual parts into a larger, more complex component or assembly. The selection of an appropriate design to join parts is based on several considerations related to both the product and the joining process. Many product design departments now improve the ease with which products are assembled by using design for assembly (DFA) techniques, which seek to ensure ease of assembly by developing designs that are easy to assemble. This chapter discusses the general guidelines for DFA and concurrent engineering rules before examining the various joining processes, namely fusion welding, solid-state welding, brazing, soldering, mechanical fastening, and adhesive bonding. In addition, it provides information on several design considerations related to the joining process and selection of the appropriate process for joining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... Abstract This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
... Abstract Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design...
Abstract
Beryllium has been successfully joined by fusion welding, brazing, solid-state bonding, and soldering. This chapter describes these processes in detail along with their advantages and disadvantages. It also addresses application considerations such as surface preparation, joint design, and testing.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230105
EISBN: 978-1-62708-351-5
... metals. Oxide stability is reduced by elevated temperature and decreased oxygen partial pressure. Each dashed line corresponds to the Gibbs free-energy change as a function of temperature, relating to a particular oxygen partial pressure. mpt, melting point Fig. 3.1 Interrelationship of joining...
Abstract
This chapter discusses joining atmospheres that are used for brazing, along with their advantages and disadvantages. It discusses the processes, advantages, and disadvantages of chemical fluxing, self-fluxing, and fluxless brazing. Information on stop-off compounds that are considered as the antithesis of fluxes is also provided.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440103
EISBN: 978-1-62708-352-2
... (or 77 °F) and dry nitrogen as the joining atmosphere. The joints measured approximately 10 mm × 10 mm × 25 μm (0.4 in. × 0.4 in. × 1 mil). Fig. 3.30 Cross-shaped preform of In-48Sn solder prepared by cold welding of two 300 μm (12 mil) diam wires at the common intersection. Source: BAE Systems...
Abstract
Materials used in joining, whether solders, fluxes, or atmospheres, are becoming increasingly subjected to restrictions on the grounds of health, safety, and pollution concerns. These regulations can limit the choice of materials and processes that are deemed acceptable for industrial use. The chapter addresses this issue with a focus on soldering fluxes. The chapter also describes factors related to soldering under a protective atmosphere, provides information on chemical fluxes for soldering of various metals, and discusses the processes involved in fluxless soldering processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... This chapter is about the joining of superalloys by nonmechanical means. As such, it is concerned with the broad categories of fusion welding, solid-state welding, and brazing, as applied to superalloys of all types. Fusion welding is the principal joining technique. Superalloys, except those with high...
Abstract
Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application decisions. It discusses the basic concepts of fusion welding and the differences between solid-solution-hardened and precipitation-hardened wrought superalloys. It addresses joint integrity, design, weld-related cracking, and the effect of grain size, precipitates, and contaminants. It covers common fusion welding techniques, defect prevention, fixturing, heat treatments, and general practices, including the use of filler metals. It also discusses several solid-state welding methods, superplastic forming, and transient liquid phase bonding, a type of diffusion welding process. The chapter includes extensive information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... brazeability brazing fusion welding microstructure solid-state welding titanium alloys weldability This chapter considers the subject of titanium joining with respect to its three broad categories: Fusion welding Solid-state welding Brazing Fusion welding, as is well known, relies...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.9781627083065
EISBN: 978-1-62708-306-5
Image
in Cold Spray Coating Applications in Protection and Manufacturing
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 7.19 Freeform and joining through cold spraying. Source: Ref 7.3
More
Image
in Structural Steels and Steels for Pressure Vessels, Piping, and Boilers
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 14.37 MIG-MAG weld joining two bars of steel with a specified minimum yield strength of 500 MPa (73 ksi) of 6.3 and 16 mm (0.25 and 0.63 in.) diameters. Bars produced by the Tempcore process. Hardness in each region of the microstructure is indicated. (a) Layer of tempered martensite. (b
More
Image
Published: 01 November 2011
Fig. 4.9 Joining a tube seam by high-frequency induction welding. Source: Ref 4.5
More
Image
Published: 01 November 2011
Fig. 6.12 Lap joining by (a) double-sided tool indentation and (b) single-sided tool indentation. Source: Ref 6.8
More
Image
Published: 01 November 2011
Fig. 10.4 Classification of different plastic joining processes. Source: Ref 10.2
More
Image
Published: 01 November 2011
Fig. 10.18 Lap shear strength comparison of different joining methods. Source: Ref 10.5
More
Image
Published: 01 October 2012
Fig. 7.20 Classification of different plastic joining processes. Source: Ref 7.8
More
Image
Published: 01 November 2010
Fig. 6.18 Lap shear strength comparison of different joining methods. Source: Ref 2
More
Image
Published: 01 August 2005
Fig. 3.7 Construction of a cyclic stress-strain curve by joining tips of stabilized hysteresis loops. Source: Ref 3.7
More
Image
Published: 01 June 1988
Fig. 8.56 Illustration of method for joining small- to large-diameter copper tubing for induction coils Source: F. W. Curtis, High Frequency Induction Heating, McGraw-Hill, New York, 1950
More
1