Skip Nav Destination
Close Modal
Search Results for
isothermal hot tensile test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 191 Search Results for
isothermal hot tensile test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060209
EISBN: 978-1-62708-355-3
.... 24 Discretization of the sheet specimen for the simulations of the isothermal hot tensile test ( Ref 33 ). The specimen geometry corresponds to the specimen shown in Fig. 6(b) ( Ref 10 , 15 ) Fig. 25 Comparison of the engineering stress-strain curves for non-strain-hardening samples...
Abstract
This chapter focuses on short-term tensile testing at high temperatures. It emphasizes one of the most important reasons for conducting hot tensile tests: the determination of the hot working characteristics of metallic materials. Two types of hot tensile tests are discussed in this chapter, namely, the Gleeble test and the conventional isothermal hot-tensile test. The discussion covers equipment used and testing procedures for the Gleeble test along with information on hot ductility and strength data from this test. The chapter describes the stress-strain curves, material coefficients, and flow behavior determined in the isothermal hot tensile test. It also describes three often-overlapping stages of cavitation during tensile deformation, namely, cavity nucleation, growth of individual cavities, and cavity coalescence.
Image
Published: 01 December 2004
Fig. 24 Discretization of the sheet specimen for the simulations of the isothermal hot tensile test ( Ref 33 ). The specimen geometry corresponds to the specimen shown in Fig. 6(b) ( Ref 10 , 15 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120033
EISBN: 978-1-62708-269-3
... amount of forged titanium alloys. Closed-die forging can be classified as blocker type (single die set), conventional (two or more die sets), or high definition (two or more die sets). Precision die forging also is conducted, usually employing hot-die/isothermal forging techniques. Conventional closed...
Abstract
This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature, pressure, and strain rate influence microstructure and properties and provides recommended ranges for commonly formed and forged titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550299
EISBN: 978-1-62708-307-2
... properties of a two-phase (O + β) alloy (Ti-22Al-27Nb at.%) Table 6.5 Tensile properties of a two-phase (O + β) alloy (Ti-22Al-27Nb at.%) Test temperature Aging treatment Tensile yield strength Ultimate tensile strength Elongation, % °C °F MPa ksi MPa ksi 22 72 None 1056 153...
Abstract
Titanium aluminides are lightweight materials that have relatively high melting points and good high-temperature strength. They also tend to be stronger and lighter than conventional titanium alloys, but considerably less ductile. This chapter begins with a review of the titanium-aluminum phase diagram, focusing on the properties, compositions, and microstructures of alpha-2 Ti3Al alloys. It then describes the properties, microstructures, and compositions of orthorhombic, gamma, and near-gamma alloys as well as the processing methods and procedures normally used in their production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
... ( Ref 18 and 25 ). Fig. 9.18. Fatigue-life data for IN 738 samples tested under thermomechanical fatigue conditions ( Ref 18 and 25 ). (a) Plot using strain-range criterion. (b) Plot using maximum-tensile-stress criterion. Fig. 9.16. Variation of number of cycles to failure...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410233
EISBN: 978-1-62708-265-5
... ) where ε w and ε t are the strains in the width and thickness, respectively; w i and w f are initial and final width, respectively; and t i and t f are initial thickness and final thickness, respectively, of the gage length of a tensile specimen after testing. Plastic strain ratios...
Abstract
This chapter discusses various alloying and processing approaches to increase the strength of low-carbon steels. It describes hot-rolled low-carbon steels, cold-rolled and annealed low-carbon steels, interstitial-free or ultra-low carbon steels, high-strength, low-alloy (HSLA) steels, dual-phase (DP) steels, transformation-induced plasticity (TRIP) steels, and martensitic low-carbon steels. It also discusses twinning-induced plasticity (TWIP) steels along with quenched and partitioned (Q&P) steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410315
EISBN: 978-1-62708-265-5
... to be the most suitable starting microstructure for high-strength wire drawing ( Ref 15.29 ). Fig. 15.10 Isothermal time-transformation diagram showing transformation temperature range for production of fine pearlite by patenting heat treatment. Source: Ref 15.33 Fig. 15.11 Tensile strength...
Abstract
This chapter describes the mechanical properties of fully pearlitic microstructures and their suitability for wire and rail applications. It begins by describing the ever-increasing demands placed on rail steels and the manufacturing methods that have been developed in response. It then explains how wire drawing, patenting, and the Stelmor process affect microstructure, and describes various fracture mechanisms and how they appear on steel wire fracture surfaces. The chapter concludes by discussing the effects of torsional deformation, delamination, galvanizing, and aging on patented and drawn wires.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500083
EISBN: 978-1-62708-317-1
.... Tensile (Uniaxial) and Bulge (Biaxial) Tests In testing materials at elevated temperatures to determine material behavior, uniform temperature distribution in the specimen is an important requirement. If this condition is not met, sections of the specimen with higher temperature will yield first...
Abstract
This chapter describes the effect of temperature and strain rate on the mechanical properties and forming characteristics of aluminum and magnesium sheet materials. It discusses the key differences between isothermal and nonisothermal warm forming processes, the factors that affect heat transfer, die heating techniques, and press systems. It also discusses the effect of forming temperature, punch velocity, blank size, and other parameters on deep drawing processes, making use of both experimental and simulated data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900219
EISBN: 978-1-62708-358-4
... Tensile properties of chromium-molybdenum hot-work tool steels at elevated temperatures (a) Testing temperature Tensile strength Yield strength (0.2% offset) Elongation 50 mm (2 in.), % Reduction of area, % Room-temperature hardness, HRC °C °F MPa ksi MPa ksi Before testing After...
Abstract
Steels for hot-work applications, designated as group H steels in the AISI classification system, have the capacity to resist softening during long or repeated exposures to high temperatures needed to hot work or die cast other materials. These steels are subdivided into three classes according to the alloying approach: chromium hot-work steels, tungsten hot-work steels, and molybdenum hot-work steels. This chapter discusses the composition, characteristics, applications, advantages, and disadvantages of each of these steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... Measurement Recommendations for High-Temperature Tensile Testing of Ceramics Atmosphere Control Summary Summary of the Advantages and Limitations of Flexure and Other “Tensile” Tests High-Temperature Tensile Tests Hot Grip Tests Direct Tensile Tests Four-Point Flexure Tests C-Ring...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... working. Others have reviewed mechanisms of reduced hot ductility ( Ref 19.12 , 19.13 ). Figure 19.4 , taken from Crowther ( Ref 19.13 ), shows schematically microstructural features and operating temperature ranges for four types of cracking identified during high-temperature tensile testing...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480095
EISBN: 978-1-62708-318-8
..., transverse direction; RD, rolling direction. Reprinted with permission from Ref 5.7 Texture Strengthening Even when the tensile properties of titanium sheet and plate are balanced in the longitudinal and transverse directions, a significant increase in strength may be found if a tensile test...
Abstract
Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning, the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.9781627083003
EISBN: 978-1-62708-300-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... controlled conditions. The cooling curve is desirable because it is sensitive to many of the factors that may affect the cooling ability of the quenchant. Time-temperature cooling curves, such as those shown in Fig. 10 , may be obtained by quenching a hot test piece of the same steel of which the parts...
Abstract
The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal transformation and continuous cooling transformation diagrams that characterize the conditions that produce the various microstructures. It discusses the mechanism and process variables of quenching of steel, explaining the factors involved in the mechanism of quenching. In addition, the chapter provides information on the causes and characteristics of residual stresses, distortion, and quench cracking of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230163
EISBN: 978-1-62708-298-3
... produced approximately a 10% strength increase, with lower ductility in both tensile and bend tests below 205 to 315 °C (400 to 600 °F). Alloys containing up to 5 wt% Cu were evaluated after vacuum casting and hot rolling by Evans et al. [1968] . The study concluded that only moderate strength...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040025
EISBN: 978-1-62708-300-3
... Abstract This chapter explains how to determine flow stress and forgeability using data from tensile tests, compression tests, ring tests, and torsion tests. It describes sample preparation, tooling and equipment, test procedures, error sources, and data plotting techniques. It also provides...
Abstract
This chapter explains how to determine flow stress and forgeability using data from tensile tests, compression tests, ring tests, and torsion tests. It describes sample preparation, tooling and equipment, test procedures, error sources, and data plotting techniques. It also provides a significant amount of experimentally derived flow stress data, including K and n values for steel, copper, and aluminum alloys, C and m values (at various temperatures) for steel, aluminum, copper, titanium, and other alloys, and average flow stress for several alloys determined by compression testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... life losses should be expected due to the fact the cycle is thermomechanical in nature and the failure curve was based on isothermal cycling test results ( Ref 9.4 ). The dashed curve in Fig. 9.3 was obtained by subtracting a thermal expansion mismatch strain range of 0.002 from the solid curve...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... sliding can occur. Creep forming, hot die forging, isothermal forging, and isothermal rolling are processes that rely in part on grain-boundary sliding and other thermally activated deformation mechanisms. The workability, or the ease with which a metal is shaped by plastic deformation, is lower...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260029
EISBN: 978-1-62708-336-2
..., the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components. extrusion thermodynamics The term thermodynamics refers...
Abstract
This chapter provides an overview of the thermodynamics of extrusion. It begins by presenting a thermodynamic model of the extrusion process expressed in the form of finite difference equations. It then explains how the model accounts for multiple sources of heat generation, the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components.
1