Skip Nav Destination
Close Modal
Search Results for
iron scrap
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 185 Search Results for
iron scrap
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220009
EISBN: 978-1-62708-259-4
... it apparently had existed in 1st-century China. In reverberatory furnaces (in which the metal was heated from above; also called puddling furnaces), iron ore, iron scale, or iron scrap was added to liquid pig iron, together with fluxes. The oxidizing additions would decrease silicon, manganese, and carbon...
Abstract
This chapter describes the basic steps in the steelmaking process. It explains how iron is reduced from ore in the liquid state through the classic blast furnace process and in the solid state by direct reduction. It discusses the conversion of iron to steel and the technological advancements that led from open hearth steelmaking to basic oxygen processes and ultimately the electric arc furnace (EAF). It describes the versatility, efficiency, and scalability of the EAF process and its impact on recycling and sustainability. It explains how EAF refining and deoxidation practices have changed over time, and describes secondary refining processes such as degassing, homogenization, rinsing, and remelting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170100
EISBN: 978-1-62708-297-6
... Amount typically observed (a) , % Effects (b) Carbon (c) Pig irons, cast scrap, coke, and intentional addition 2.0–3.0 Lower levels of carbon are difficult to anneal, have strong white iron tendency, and have low fluidity. Higher levels are easier to anneal, have better fluidity, but show...
Abstract
This article explains how malleable iron is produced and how its microstructure and properties differ from those of gray and ductile iron. Malleable iron is first cast as white iron then annealed to convert the iron carbide into irregularly shaped graphite particles called temper carbon. Although malleable iron has largely been replaced by ductile iron, the article explains that it is still sometimes preferred for thin-section castings that require maximum machinability and wear resistance. The article also discusses the annealing and alloying processes by which these properties are achieved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730149
EISBN: 978-1-62708-283-9
... be separated magnetically from other scrap. The scrap is either remelted in an electric arc furnace or added to pig iron in a basic oxygen furnace. All grades of steel can be recycled because most alloying elements are oxidized during processing. Tin and copper are the exceptions, and there is concern...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410009
EISBN: 978-1-62708-265-5
..., Bessemer patented a process in which hot air was blown through molten pig iron to reduce carbon and silicon content; in 1858, Siemens first successfully operated an open hearth furnace in which solid or liquid pig iron and scrap were melted with combusted producer gas. In later modifications, the oxygen...
Abstract
This chapter traces the history of steelmaking over three millennia, from the discovery of martensite in a mining tool dating from the twelfth century B.C. to the nineteenth century development of the Bessemer and Siemens processes. It also describes the work of early metallographers who discovered many phases and microstructures associated with steel and gave them their now familiar names. The chapter concludes with a brief discussion on the emergence of continuous casting and the subsequent development of strip casting production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320003
EISBN: 978-1-62708-332-4
... depending on the grade of the cast iron and its application. This reduction of carbon is achieved by blending the pig iron with steel scrap in stack furnaces called cupolas or in coreless induction furnaces. Cupolas are stack furnaces that are similar to blast furnaces; they use coke as fuel and air...
Abstract
This chapter provides a brief overview of iron and steel manufacturing and the major equipment involved in the process as well as identifying where casting fits into the overall process. In addition, it provides an overview of cast iron manufacturing, including the processes involved in converting pig iron into cast iron and steel.
Image
Published: 01 June 2010
Fig. 38 Six ton heroult-type furnace. Source: A.L. Feild, Manufacture of Stainless Iron from Ferrochromium, from Scrap, or from Ore, Metal Progress , Feb. 1933 , p 15
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320323
EISBN: 978-1-62708-332-4
... Charge materials in a cupola compared with an induction furnace Charge Grade 30 iron, composition is % Cupola Induction furnace % Total C Si P S Mn Total C Si Mn Foundry returns, scrap 30 3.35 1.88 0.16 0.11 0.70 … … … Purchased scrap, cast iron 22.5 3.25 2.20...
Abstract
This chapter provides an overview of key elements in controlling the casting process, systems to confirm the quality of outgoing components, and the steps needed to launch a novel product. The discussion also provides information on process control tools and techniques; incoming material control; process control of sand preparation and system maintenance; metallic charge materials; product quality control; and melting, metallurgical, and mechanical testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250219
EISBN: 978-1-62708-287-7
... Iron Availability of recycled steel for the minimills was a critical problem due to rapid industry growth after 1995. The price for high-grade scrap had increased from $30 per ton in 1970 to $125 in 1995, reaching $150 by 2005. The big producers, especially Nucor and Steel Dynamics, responded...
Abstract
This chapter discusses the rise of steel minimills in the late 1960s through the leadership of F. Kenneth Iverson and Gerald Heffernan. The discussion covers the development of processes for flat products, flanged beams, and railroad rails. The chapter also covers the growth of the minimill industry along with the consolidation of the industry into large corporations. The chapter ends by providing information on novel processes developed for making iron.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240349
EISBN: 978-1-62708-251-8
... in which hot air was blown through molten pig iron to reduce the carbon and silicon contents. In 1858, Siemens first successfully operated an open-hearth furnace in which liquid pig iron and scrap were melted with a hot gas flame. The key factor in both the Bessemer and Siemens processes was the oxidation...
Abstract
This chapter discusses various processes involved in the production of steel from raw materials to finished mill products. The processes include hot rolling, cold rolling, forging, extruding, or drawing. The chapter provides a detailed description of two main furnaces used for making steel: the electric arc furnace and the basic oxygen furnace. It also provides information on the classification and specifications for various steels, namely, plain carbon steels, low-carbon steels, medium-carbon plain carbon steels, and high-carbon plain carbon steels. The chapter concludes with a general overview of the factors influencing corrosion in iron and steel and a brief discussion of corrosion-resistant coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170021
EISBN: 978-1-62708-297-6
..., but it tends to come from pig iron or scrap. To some extent, it increases the fluidity of iron. Phosphorus forms a low-melting phosphide phase in gray iron that is commonly referred to as steadite. At high levels, it can promote shrinkage porosity, while very low levels can increase metal penetration...
Abstract
This article covers the metallurgy and properties of gray irons. It describes the classes or grades of gray iron, the types of applications for which they are suited, and the corresponding compositional ranges. It discusses the role of major, minor, and trace elements, how they are added, and how they affect various properties, behaviors, and processing characteristics. It explains how silicon, chromium, and nickel, in particular, improve high-temperature, corrosion, and wear performance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790175
EISBN: 978-1-62708-356-0
... Fig. 38 Six ton heroult-type furnace. Source: A.L. Feild, Manufacture of Stainless Iron from Ferrochromium, from Scrap, or from Ore, Metal Progress , Feb. 1933 , p 15 Abstract This chapter presents a brief description of the three-step process: melting, decarburizing, and alloying...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140001
EISBN: 978-1-62708-335-5
... alternative to cast iron and brass pots, pans, and kettles. The cost of aluminum steadily declined, and by the end of the 19th century important engineering applications became economically viable. Aluminum in cast as well as wrought forms was a metal for its time. Three emerging markets coincided...
Abstract
This chapter first introduces the various factors that may alter the physical and mechanical properties of aluminum castings that are addressed in the other chapters in the book. Then, it presents the historical development of aluminum castings, followed by a discussion on the advantages and limitations of aluminum castings. Next, the chapter describes the major trends that are influencing the increased use of aluminum castings. Finally, it introduces the considerations involved in the selection of an appropriate aluminum alloy and casting process for a given application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... is charged with scrap steel, followed by liquid pig iron from the blast furnace. A water-cooled lance is then lowered into the vessel, through which very pure oxygen is blown at high pressure. The oxygen interacts with the molten pig iron to oxidize undesirable elements, including excess carbon, manganese...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170062
EISBN: 978-1-62708-297-6
.... It is removed during the remelting of scrap ductile iron. Aluminum The presence of even trace amounts of aluminum in ductile iron may promote subsurface pinhole porosity and dross formation and should therefore be avoided. The most common sources of aluminum are contaminants in steel and cast iron scrap...
Abstract
This article discusses the metallurgy and properties of ductile cast iron. It begins with an overview of ductile or spheroidal-graphite iron, describing the specifications, applications, and compositions. It then discusses the importance of composition control and explains how various alloying elements affect the properties, behaviors, and processing characteristics of ductile iron. The article describes the benefits of nickel and silicon additions in particular detail, explaining how they make ductile iron more resistant to corrosion, heat, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320103
EISBN: 978-1-62708-332-4
... Abstract This chapter covers mechanical properties, microstructures, chemical compositions, manufacturing processes, and engineering of gating practices for several applications of gray, white, and alloyed cast irons. It begins with a description of material standards, followed by a section...
Abstract
This chapter covers mechanical properties, microstructures, chemical compositions, manufacturing processes, and engineering of gating practices for several applications of gray, white, and alloyed cast irons. It begins with a description of material standards, followed by a section providing information on the practice of stress relieving. Next, the chapter details various ways of eliminating slag entrainment while designing gating and venting systems. Several factors related to the establishment of the optimum pouring rate and time are then covered. Further, the chapter discusses the technology of unalloyed or low-alloyed gray iron castings and white iron and high-alloyed cast irons. Finally, it describes the casting defects that are associated with cast iron and the processes involved in solving these defects. The article includes a number of figures illustrating the topics discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120025
EISBN: 978-1-62708-269-3
... alloy elements, and/or reclaimed titanium scrap (usually called “revert”). Titanium Sponge Titanium is extracted from ores, such as rutile, where the form of titanium is as an oxide. Titanium dioxide is reacted with coke and chlorine to produce titanium tetrachloride. The subsequent reaction...
Abstract
This chapter describes the basic steps in the production of titanium ingots and their subsequent conversion to standards product forms. It explains how titanium ore is reduced to a spongy residue, then granularized, compacted, and melted (along with alloying additions) to form an ingot, which may be remelted several times to achieve the necessary properties. It also discusses the cause of defects and ingot imperfections and the benefits of billet reduction and grain-refinement processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700249
EISBN: 978-1-62708-279-2
... to reduce the iron ore to crude iron in the blast furnace. This is also the process that consumes the most energy. Since 1975, energy efficiency methods have led to reductions of approximately 50% of the energy required to produce a ton of crude steel. There are three production routes for manufacturing...
Abstract
Improvement in processing, material substitution, light weighting, and recycling have contributed immensely to the cause of sustainability in the materials cycle. This chapter discusses some of the key indicators of sustainability that have direct relevance to advanced high-strength steels (AHSS) used in a vehicle. The discussion covers the major contributor to greenhouse gas emissions, production routes for manufacturing crude steel, and an optimized index guideline for selecting the best material. Details on the benefits of AHSS on the life cycle of vehicles are provided. The chapter also provides information on recycling and the economics of AHSS.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320157
EISBN: 978-1-62708-332-4
.... Manufacturing guidelines for malleable iron castings Table 8.4 Manufacturing guidelines for malleable iron castings Process Details Melting Coreless induction furnaces preferred, as low carbon content compels the use of high percentage of steel scrap. Malleable iron is also produced in cupolas...
Abstract
Malleable iron has unique properties that justify its application in the metal working industry. This chapter discusses the advantages, limitations, and mechanical properties of malleable iron; provides a description of the malleabilization process; and presents manufacturing guidelines for malleable iron castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730051
EISBN: 978-1-62708-283-9
..., and electromagnets for handling scrap. Many of these applications employ silicon-iron (usually 3 to 3.5% Si). Alloys containing 3% Si are body-centered cubic (bcc) ferrite at all temperatures up to the melting point (Fig. 5.9). Silicon increases the electrical resistance of iron. A high electrical resistance...
Abstract
This chapter is a review of magnetic materials and how they behave. It begins by discussing the significance of ferromagnetism and comparing the Curie temperature of several ferromagnetic elements. It then discusses the concept of magnetic domains and illustrates how flux paths, and magnetostatic energy, vary based on the size of the domain. It also discusses the process of magnetization and compares and contrasts hard and soft magnetic materials.
1